

Deliverable 3.2

Project Title Next-Generation Hybrid Broadcast Broadband

Project Acronym HBB-NEXT

Call Identifier FP7-ICT-2011-7

Starting Date 01.10.2011

End Date 31.03.2014

Contract no. 287848

Deliverable no. 3.2

Deliverable Name Design and Protocol (High Level Architecture): User ID,
Profile, Application Reputation Framework

Work package 3

Nature Report

Dissemination Public

Author Félix Gómez Mármol, Ginés Dólera Tormo (NEC), Mark
Gülbahar (IRT), Sebastian Schumann (ST), Gregor
Rozinaj, Ivan Minárik (STUBA)

Contributors Juraj Kačur, Matej Féder, Jozef Bán, Marek Vančo,
Ondrej Lábaj, Alexandra Posoldova (STUBA)

Due Date 30.09.12

Actual Delivery Date 05.10.12

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 1

Table of Contents

Executive Summary .. 3
1. Introduction .. 5
2. Multimodal User Identification / Authentication, Multilevel Authorization 6
2.1. Speaker Identification ... 6
2.1.1. Data Model .. 6
2.1.2. Design .. 7
2.1.3. Interface .. 8
2.1.4. Conclusion ... 9
2.2. Face Recognition ... 10
2.2.1. System Design ... 10
2.2.2. Internal Implementation ... 12
2.3. 3D Face Recognition .. 14
2.3.1. Algorithm ... 14
2.3.2. Conclusion ... 15
2.4. Section Conclusion .. 15
3. Trust and Reputation Module .. 16
3.1. Data model .. 16
3.1.1. Reputation bundle ... 17
3.1.2. Reputation ... 18
3.1.3. Subject ... 20
3.1.4. Score .. 21
3.1.5. Date ... 21
3.1.6. Feedback bundle ... 22
3.1.7. Feedback ... 23
3.1.8. Issuer ... 24
3.1.9. Comment ... 25
3.1.10. Preference ... 26
3.1.11. Device capabilities ... 26
3.1.12. System conditions ... 28
3.1.13. Example ... 29
3.2. Design .. 33
3.2.1. Device capabilities & System conditions ... 34
3.2.2. User’s profile ... 34
3.2.3. Feedback collector .. 34
3.2.4. Feedback storage .. 34
3.2.5. Reputation computation engine ... 34
3.2.6. Reputation scores storage ... 35
3.2.7. Reputation-based decision making engine ... 35
3.2.8. Reputation information visualizer ... 35
3.3. Interface .. 35
3.3.1. Internal Implementation ... 35
3.3.2. External interfaces ... 45
3.3.3. U.027 – Download app from app-store ... 51
3.3.4. U.031 – Mark app as trusted ... 53
3.3.5. U.032 – Using user identity and security mechanisms ... 55
4. Identity Management Module ... 57
4.1. Data model .. 57

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 2

4.1.1. User ... 57
4.1.2. Device .. 59
4.1.3. Context .. 60
4.2. Design .. 62
4.2.1. Database implementation ... 62
4.3. Interface .. 65
4.3.1. Internal Implementation ... 65
4.3.2. API ... 65
4.4. Sequence Diagrams ... 71
5. Profile Management Module ... 74
5.1. Data model .. 74
5.1.1. User Profile .. 74
5.1.2. Service Profile .. 75
5.2. Design .. 75
5.3. Interface .. 76
5.4. Sequence Diagrams ... 78
6. Security Manager ... 79
6.1. Scope ... 79
6.1.1. Solution Overview ... 82
6.1.2. Management ... 83
6.1.3. Hardware architecture .. 83
6.1.4. Authorization model.. 83
6.1.5. PKI architecture ... 84
6.1.6. Use case ... 87
6.1.7. Sequence Diagram ... 89
6.1.8. API description .. 91
7. Conclusion ... 94
8. References .. 95
9. Abbreviations .. 96
10. Annex A ... 97

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 3

Executive Summary
This document is the second deliverable of WP3 of the HBB-NEXT project. It presents

designs and first prototype implementations related to personalisation of next-generation

hybrid-broadcast-broadband television. It provides a current (September 2012) view of the

status of the designs, prototypes, integrations and demonstrations towards a central use

case. It also includes an outlook to future work.

Use case: The principal use case of WP3 is described in following scenario.

 Generic app store

 User is entering the room, basic identification recognizes him/her

 Personalized app store will appear

 User tries to install/buy/validate(feedback) the app

 According user multilevel authentication and behaviour user is allowed/not

allowed to do that

Design: A preliminary system design is presented, based on the following components:

 Multimodal interface

 Identity and Security Manager

 Reputation Framework

Prototypes: The following initial prototypes have been realised: Face Recognition (STUBA),

Gesture Recognition (STUBA), Speaker identification (STUBA), Integration System (STUBA),

Application reputation system (NEC), Early prototype for cloud offloading (NEC). The first

four prototypes are a part of multimodal interface made by STUBA, last 2 applications from

NEC represents reputation framework and cloud offloading.

Integration: Within WP3 we have presented the first successful integration of the two

following components: gesture recognition and remote control of the TV system using

gestures.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 4

Demonstration: Demonstration of face recognition, speaker identification, as well as

reputation framework has been presented.

Future work: Among other the following work is planned for WP3 for the next year:

improving the multi-modal interface, combining face recognition with voice recognition and

enabling the identification of multilevel user identification; 3D face recognition and iris

recognition. Improving of the reputation framework should result in a possible integration

of all WP3 functionalities into one integrated demo.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 5

1. Introduction
This deliverable provides first designs and protocols for the following components:

 Multimodal user identification

 Security manager

 Reputation framework.

Multimodal interface has been addressed by speaker identification and face recognition.

The modules are designed to cooperate together and to demonstrate the integration on a

simple demo. A user enters the room, the system will recognize the user, the user open the

AppStore application and the system allows him to choose, open, buy and install a desired

application. For each activity or operation of the user, the system may ask multilevel

authentication based on secure identification with satisfactory validation and security.

The structure of this document is as follows. The second chapter is devoted to multimodal

interface and research areas, in which the project team implement applications for user

identification. The third chapter describes trust and reputation framework. Identity

management module, Security management module and Profile management module

described in following 3 chapters together with multimodal interface module offer the

background for secure and personalised functionality of the system.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 6

2. Multimodal User Identification / Authentication, Multilevel
Authorization

Multimodal User Identification is one of the key features of the HBB-NEXT project aiming at

effortless utilization of the system’s features while assuring that the system only performs

commands which are properly authorized. The speaker identification tends to provide basic

identification of the possible users located in the system installation area. The basic level

would be suitable for not-so-crucial identification tasks, such as loading personal profile.

The face detection approach aims to provide more reliable user identification based on

users’ faces which contain far more characteristics that can be parameterised in comparison

to the voice identification approach. Additionally, the 3D face recognition further extends

the possibilities of feature extraction in order to more precisely identify particular persons

and can be thus used for the highest level authentication (and authorisation) for the most

demanding applications (i.e. bank account login, etc.).

2.1. Speaker Identification

The aim of a speaker identification system is to decide the identity of a speaker upon an

utterance, regardless of what he or she said. As any speaker identification system consists

of two main parts, namely: feature extraction and classification method, the designer has to

select proper methods and their modifications for a given application which may differ

depending on type and setting of particular task. For the purpose of our application we

have chosen the k- nearest neighbour method (KNN) for classification and Mell frequency

cepstral coefficients (MFCC) for speech parameterizations and their modifications. For the

system functional overview see Figure 1 that will be explained in the Interface section.

2.1.1. Data Model

In order to perform speaker identification using the selected KNN method (weighted KNN)

and MFCC, following internal data structures had to be introduced:

 Buffer of speech samples, which is a simple vector containing sequence of short

numbers. As there are both recognition and training phases which are of the

different lengths two such buffers of different sizes are used.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 7

 Buffer of parameterised speech, i.e. vectors of MFCC. Theoretically it is a matrix

where rows are different speech frames and columns are individual features

(MFCC elements). However it is implemented as a vector. 2 buffers are used one

for tested speech and the second one will store all vectors in the database

(training MFCC vectors appended by indexes of speakers)

 Vectors for found neighbours (their indexes)

 Vectors for found neighbours (their distances)

 Vector of winners (their indexes)

 Vector of winners (their confidences)

 Structure for storing recognition settings that contains 10 important items

controlling the recognition process, like: type of local distance, umber of

neighbours, training and recognition times etc.

 Structure for storing feature extraction settings that contains 12 important items

controlling the speech extraction process, like: frequency limits, frame length and

its shift etc.

 Array of strings storing indexes of speakers and their names

2.1.2. Design

The application is a standalone console Windows application and as it should be fast and

process lot of data it is coded in C/ C++ language. As it uses OS and hardware specific

system calls (reading sounds from microphones via WINAPI 32) it is not portable to other OS

systems unlike Windows 98 and higher versions.

The basic facilities of the applications are:

1. Recording a new speaker, transforming the wave samples into MFCC features

according to configuration variables and storing both name and feature vectors in

the database

2. Identifying unknown speaker (recording voice, producing MFCC features, finding

nearest neighbours and taking decision) according to configuration variables.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 8

3. Listing recorded users in the database.

4. Removing recorded users from the database

5. Change its functionality via properly setting decision and parameterisation

configuration files.

2.1.3. Interface

Internally the application can be divided into several functionally distinctive and setting

independent blocks which are: wave form reading, feature extraction (MFCC), KNN, final

decision taking, I/O functions, data storage and user API. Their mutual cooperation is shown

in Figure 1.

Figure 1: A functional block scheme of single user identification.

The API is divided (by functionality and access not by security) between designer/system

administrator API and common user interface. The designer/ system administrator API is

done via 2 configuration files (config_knn.txt –controlling recognition process and

config_param.txt that is involved in the speech extraction, for examples of the

configuration files please see Annex A) where almost all settings controlling the behaviour

of an application can be set. It should be noted that in order the application function

properly the parameters in both configuration files must be set by professionals. The user

API is done via a console application menu whose outlook is as follows:

Speaker Identification Menu:

 Add and record new user press 1

 Identify unknown speaker press 2

 Display users in database press 3

User
API

Sound
Recording MFCC

I/O

KNN

Decision
Algorithm

Data
storage

User

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 9

 Remove a user from database press 4

 Exit press 5

Choice:

The operation flows are as follows. After choosing a desired option from the menu a

particular code is invoked. When adding a new user first a name is require to be entered

that must be unique. After that a speaker is prompted to speak for pre-set time given by a

configurable parameter. There is also a minimal training time which must be met prior to

saving new features. When an unknown individual is to be recognized, the recognition data

are first updated and stored in operational memory. Then he or she is prompted to speak

for a given time period (also set in the configuration file). If minimal length is not met

warning is displayed. Then speech is transformed into MFCC and is passed to KNN algorithm

which based on the stored training vectors chooses nearest neighbours and determines

particular winners with their scores. Finally, all winners are considered in the concluding

decision process whose output is provided to the user via a console window. The remaining

options (listing and deleting users) are self-explanatory.

2.1.4. Conclusion

In the next step all implemented methods would be optimized (all free parameters and

features will be set) in order to achieve the highest accuracy and robustness. It is possible to

implement and test parametric decision taking algorithms like Gaussian mixture model in

the case of lack of training vectors. Also additional signal processing techniques may be

implemented and tested, like: cepstral mean subtraction, feature normalization, feature

warping and mapping (to suppress session variability), etc. It is also possible to implement

higher level features like pitch period to increase the accuracy and robustness.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 10

2.2. Face Recognition

In this chapter we present a design and first prototype implementation of our face

recognition module to application in the HBB-NEXT project. HBB-NEXT project defines a list

of requirements for single local user identification based on a human face [1] that the

systems must/should/may implement:

 The system shall identify user inside the room by his face, if he belongs to the

local users group.

 The system should be able to recognize user and compare him to locally stored

user profiles without internet access.

 The system may identify user by his face inside the room unknown to the local

system (not listed in the local users group).

 System may recognize user based on face recognition even in dark.

HBB-NEXT requirements and methods which are able to work well in real-world conditions

were included to our face recognition module.

2.2.1. System Design

In this section we describe architecture of the proposed system and workflow used in the

HBB-NEXT project. Since the face recognition task requires processing of the input from a

camera, we decided to use a pipeline model where each frame captured by the camera is

processed by set of modules. These modules contains an implementation of the chosen

face recognition method and, together with the camera, operates in a loop.

The main recognition process (the system loop) consists of following sub processes:

 Image acquisition - reads an image from the camera, converts it to the system

format and pass it to the system pipeline.

 Face localisation - localizes the faces in the image on the image and associate

found coordinates with the image. For the purpose of this project we use two

different localisation implementation:, depending on the camera which is used:

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 11

• OpenCV Cascade detector - this is used with ordinary cameras with

standardized interface (e. g. web cameras compatible with OpenCV

library)

• Kinect Toolkit Face detector - this detector is used with the Kinect Camera1

♦ Pre-processing of localised faces - copies regions of the image

containing faces into new samples, converts the regions into the

appropriate resolution and the appropriate colour format.

 Feature extraction - Extracts features from preprocessed faces. For the purpose

of this project we decided to use LBP histograms as features. LBP histograms are

considered as one of the best features for recognizing faces ([2], [3]) even when

only a limited number of samples is available [4] and can be easily computed in

the real time [5].

 Classification of faces - For the classification of features extracted from faces we

propose to use two methods depending on the number training images and

number of identities which is to be used within the system:

• Support Vector Machines - is used when only relatively small number of

identities is considered in the system. Main disadvantage of this method is

the time-consuming training of the model when large number of samples

is used.

• Nearest neighbour distance matching (with the use of Chi-square

distance) - this algorithm can be easily parallelised and used in distributed

system. The training is done simply by inserting features into the

database.

 Face tracking - In our implementation we localize only frontal faces in the image

because the vast majority of face recognition methods is reliable only with use of

frontal face images. Once the face has been recognized, it is tracked, what

1 Face tracking SDK is a part of Kinect for Windows Developer Toolkit v1.5 -
http://www.microsoft.com/en-us/download/details.aspx?id=29865

http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865
http://www.microsoft.com/en-us/download/details.aspx?id=29865

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 12

significantly saves computational resources and can follow the subject even after

changes in pose. In our system we use TLD tracker proposed by Zdenek Kalal [6].

 Temporal filtering - localisation of faces is not always reliable due to changes in

environment, poses or imperfection of cameras. To prevent the system from

triggering events in case of every detection or tracking failure we propose a

method for filtering the most frequent types of failure. For instance to filter out

short focus-losing windows in tracking.

 Event trigger - this module sends a notification of user state changes to the rest

of HBB-NEXT applications.

The face recognition module sends XML output to a server. The XML describes the identity

of subject (person), probability of correct classification, presence of a person in the room

(present, idle, quit) and it contains all the identities that were trained. The example of using

the XML structure is shown in Figure 2.

<?xml version="1.0" encoding="UTF-8"?>
<application>FACE_RECOGNITION</application>
<users>
 <user>
 <name>John</name>
 <probability>10</probability>
 <presence>PRESENT</presence>
 </user>
 <user>
 <name>George</name>
 <probability>75</probability>
 <presence>IDLE</presence>
 </user>
 <user>
 <name>Bill</name>
 <probability>60</probability>
 <presence>QUIT</presence>
 </user>
</users>

Figure 2: The example of XML structure

2.2.2. Internal Implementation

The core of the face recognition system is written in C++ with using OpenCV library. We

decided to use an open source project Biosandbox developed at STUBA. In this project a

large number of required algorithms was already implemented in form of dynamic modules.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 13

Figure 3: Schematic illustration of processes sequence during system execution.

The basic concept of the Biosandbox system is shown in Figure 3. The composition of

modules is defined in an XML configuration file that can be created in a graphical editor that

is also part of this project. For the purpose of the project we developed 3 additional

modules:

 Kinect Input module - reads images captured by Kinect camera.

 Tracking module based on TLD [6] - once a face is localized in the image, this

modules track its position even when the pose of the subject has changed.

 Temporal filtering module combined with event trigger - checks presence of the

subject in the scene with considering detection results and previous results in the

time.

We would like to highlight that other existing modules has been also modified to meet all

requirements of the project.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 14

2.3. 3D Face Recognition

HBB NEXT project is an idea where is very important to keep trust because of users will use

many applications which will be used for various purposes. For example: logging to trust

application, verification for paying or buying products, etc. We have included to HBB 3D

face recognition for High level verification that could increase the security of some used

applications.

2.3.1. Algorithm

The software is programmed in .NET platform and it uses Kinect libraries for communication

with Kinect sensor. The main principle is to find the nearest point of face from sensor that

is a nose tip. Firstly a person has to have a face in active zone that is from 400mm to

850mm from sensor. If the face is in inactive zone (red zone), won’t be measured. In the

active zone will be detected the nearest point (nose tip). The nose tip will be our reference

value from which other pixels of face are measured. Next we have to set a distance of

measured zone that usually is about 50mm (white zone). Then we get a set of facial points

that are represented by relative distances. The relative distances are processed 30 times

per second because the position of measured head is continually changed.

Figure 4: a) Principle of base measuring and b) scanned face from distance 900mm.

Algorithm in steps:

1. Obtain raw data from Kinect sensor – The sensor obtains data and sends as 16 bit

number. This number contains 13 bits for depth data and 3 bits for player

segmentation data.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 15

2. Calculate distances from raw data – In this step it is required pick 13 bits of distance

and compute distance in millimetres.

3. Find the nearest point (nose tip) – This algorithm finds the closest area of points,

because a nose has the smallest distance from camera among all points of a face.

4. Set width of the measured zone – It is still needed to set an active zone of face. It is

a distance from nose tip to the deepest point of face area.

5. Get data from zone – Now it possible discern face points from other data. This data

can be normalized and saved to database.

6. Normalize data and convert their to RGB picture – Normalization of face data

according some parameters.

2.3.2. Conclusion

In the future we want to normalize data for saving to a database and create some

parameters for comparing in the database. Firstly, we want to try to use some principles

which were described in Deliverable 3.1 and add some of ours.

2.4. Section Conclusion

As it was mentioned in the previous sections the presented solutions only exist in the form

of early demos. All of them, however, are already capable of interaction with the rest of the

multimodal system designed by STUBA, even though there is still room for improvements,

particular to each modality. Further work in the field of multimodal user identification and

authorisation will include, apart from improving the algorithms themselves, gradual

integration of the modalities’ outputs to enhance the quality of proper identification.

Additionally, a goal exists to create multi-stage user identification, consistent with the

project’s Work Package 5.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 16

3. Trust and Reputation Module
As stated in D3.1, one of the challenges of the HBB-NEXT project is to offer trustworthy HBB

services and the rise of users’ trust when interacting with the HBB-NEXT platform. WP3

tackles this challenge by developing a trust and reputation management framework for

service providers and applications developers. The resulting solution will also be intended

to guarantee accurate handling of security threats as well as isolation of potential malicious

services, e.g. avoiding fraudulent or untrustworthy applications, or determining the

trustworthiness of an entity requesting some users’ profile attributes to deliver a service.

The content of this chapter is organized as follows: Section 3.1 will present the set of data

structures, represented as XML schemas, used to transfer reputation information between

the internal modules of the enabler and between this enabler and external ones. The

aforementioned internal modules will be presented and described in Section 3.2, showing

their functionality as well as their interactions in the whole picture of the enabler

architecture. In turn, Section 3.3 will explain the interfaces required to interact and make

use of both each internal module, as well as the trust and reputation management enabler

itself. Finally, Section 3.4 will show some sequence diagrams depicting the main operations

to be performed through this trust and reputation management enabler. The actual

algorithms to compute the final reputation scores, as well as many other implementation

details of the trust and reputation enabler will be shown and explained in D3.3 “Design and

Protocol: Intermediate User ID, Profile, Application Reputation Framework”.

3.1. Data model

In order to ease the communication and transfer of reputation information, both within the

internal modules constituting the trust and reputation enabler and towards external

modules, we have adopted a set of data structures inspired in the specification done by

OASIS ORMS (Open Reputation Management Systems [7]).

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 17

3.1.1. Reputation bundle

The <ReputationBundle> element can contain one or more <Reputation> elements to

optionally make a group of reputation instances. Within the context of HBB-NEXT, this data

structure can be used, for instance, by the AppStore to retrieve the <Reputation> elements

of a bunch of applications, all in once.

The following schema fragment defines the <ReputationBundle> element and its

ReputationBundleType complex type:

<element name="ReputationBundle" type="ReputationBundleType"/>

<complexType name="ReputationBundleType">

<sequence>

<element ref="Reputation" minOccurs="1" maxOccurs="unbounded"/>

</sequence>

<attribute name="id" type="String" use="optional"/>

</complexType>

The <ReputationBundle> element will be used, within the context of HBB-NEXT, to

represent the reputation score given to a set of HBB-NEXT applications.

One example of use of the <ReputationBundle> element would be the following one:

<ReputationBundle id=”rpb001”>

<Reputation id=”...”>

 ...

</Reputation>

<Reputation id=”...”>

 ...

</Reputation>

...

</ReputationBundle>

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 18

3.1.2. Reputation

The following schema fragment defines the <Reputation> element and its ReputationType

complex type:

<element name="Reputation" type="ReputationType"/>

<complexType name="ReputationType">

<sequence>

<element ref="Subject" minOccurs="1"/>

<element ref="Score" minOccurs="1"/>

<element ref="Date" minOccurs="1"/>

<element ref="FeedbackBundle" use="optional"/>

</sequence>

<attribute name="id" type="anyURI" use="optional"/>

</complexType>

The <Reputation> element will be used, within the context of HBB-NEXT, to represent the

reputation score given to a particular HBB-NEXT application. It might contain, optionally, a

<FeedbackBundle> element containing the set of feedbacks provided by previous users

regarding this specific HBB-NEXT application.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 19

One example of use of the <Reputation> element would be the following one:

<Reputation id=”...”>

<Subject>

 AngryPigeon

</Subject>

<Score>

 0.68</Score>

<Date>

 2012-09-30T09:30:10+02:00

</Date>

<FeedbackBundle id=”...”>

...

</FeedbackBundle>

</Reputation>

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 20

3.1.3. Subject

The <Subject> element contains a String value which identifies the entity evaluated by this

document.

The following schema fragment defines the <Subject> element:

<element name="Subject" type="String"/>

The <Subject> element will be used, within the context of HBB-NEXT, to represent a

particular HBB-NEXT application whose reputation needs to be computed or known.

Moreover, it could be used as well to identify the developer or provider of a specific

application requesting access to user’s attributes. One example of use of the <Subject>

element would be the following one:

<Subject>

AngryPigeon

</Subject>

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 21

3.1.4. Score

The <Score> element contains a double value of a reputation score contained within a

<Reputation> element.

The following schema fragment defines the <Score> element:

 <element name="Score" type="double"/>

One example of use of the <Score> element would be the following one:

<Score>

 0.68

</Score>

3.1.5. Date

The <Date> element contains a time value which specifies the dates defined in the

namespace of the <Context> element. The value MUST be expressed in UTC form and MUST

NOT use fractional seconds.

The following schema fragment defines the <Date> element and its DateType complex type:

<element name="Date" type="DateType"/>

<complexType name="DateType">

<simpleContent>

<extension base="dateTime">

<attribute name="type" type="anyURI" use="required"/>

</extension>

</simpleContent>

</complexType>

One example of use of the <Date> element would be the following one:

<Date>

 2012-09-30T09:30:10+02:00

</Date>

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 22

3.1.6. Feedback bundle

The <FeedbackBundle> element can contain one or more <Feedback> elements to optionally

make a group of feedback instances. This can be used, for instance, and within the context

of HBB-NEXT, to retrieve all the feedbacks related to a concrete application in the AppStore.

The following schema fragment defines the <FeedbackBundle> element and its

FeedbackBundleType complex type:

<element name="FeedbackBundle" type="FeedbackBundleType"/>

<complexType name="FeedbackBundleType">

<sequence>

<element ref="Subject" minOccurs="1"/>

<element ref="Feedback" minOccurs="1" maxOccurs="unbounded"/>

</sequence>

<attribute name="id" type="anyURI" use="optional"/>

</complexType>

The <FeedbackBundle> element will be used, within the context of HBB-NEXT, to represent

the collection of feedbacks provided by previous users regarding a concrete HBB-NEXT

application.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 23

One example of use of the <FeedbackBundle> element would be the following one:

<FeedbackBundle id=”fbb001”>

<Subject>

 AngryPigeon

</Subject>

<Feedback id=”fb001”>

...

</Feedback>

<Feedback id=”fb002”>

...

</Feedback>

...

</FeedbackBundle>

3.1.7. Feedback

The following schema fragment defines the <Feedback> element and its FeedbackType

complex type:

<element name="Feedback" type="FeedbackType"/>

<complexType name="FeedbackType">

<sequence>

<element ref="Issuer" minOccurs="1"/>

<element ref="Subject" minOccurs="0"/>

<element ref="Score" minOccurs="1"/>

<element ref="Date" minOccurs="1"/>

<element ref="Comment" use="optional"/>

</sequence>

<attribute name="id" type="anyURI" use="optional"/>

</complexType>

The <Feedback> element will be used, within the context of HBB-NEXT, to represent the

feedback provided by a specific previous user (<Issuer>) regarding a concrete HBB-NEXT

application (<Subject>).

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 24

One example of use of the <Feedback> element would be the following one:

<Feedback id=”fb001”>

<Issuer id=”Alice”>

...

</Issuer>

<Subject>

 AngryPigeon </Subject>

<Score>

 0.8</Score>

<Date>

 2012-09-28T10:22:30+02:00</Date>

<Comment>

 Nice application, easy to use </Comment>

</Feedback>

3.1.8. Issuer

The <Issuer> element contains a String value which identifies the evaluating entity.

The following schema fragment defines the <Issuer> element:

<element name="Issuer" type="IssuerType"/>

<complexType name="IssuerType">

<sequence>

<element ref="Preference" maxOccurs="unbounded" use="optional"/>

</sequence>

<attribute name="id" type="String"/>

</complexType>

The <Issuer> element will be used, within the context of HBB-NEXT, to represent the

specific end-user providing a feedback regarding a concrete HBB-NEXT application.

Moreover, this end-user will have some defined preferences used to compute a customized

reputation score.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 25

One example of use of the <Issuer> element would be the following one:

<Issuer id=”Alice”>

<Preference name=”price”>

...

</Preference>

<Preference name=”usability”>

...

</Preference>

...

</Issuer>

3.1.9. Comment

The <Comment> element contains a string value which represents the optional opinion

message left by an end-user when providing feedback about a specific HBB-NEXT

application.

The following schema fragment defines the <Comment> element:

<element name="Comment" type="string"/>

One example of use of the <Comment> element would be the following one:

<Comment>

 Nice application, easy to use

</Comment>

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 26

3.1.10. Preference

The <Preference> element contains a String value which identifies a concrete user’s

preference regarding the applications provided in the AppStore to determine how

important this feature is to the end user.

The following schema fragment defines the <Preference> element:

<element name="Preference" type="PreferenceType"/>

<complexType name="PreferenceType">

<attribute name="name" type="string"/>

<sequence>

<element ref="Score"/>

</sequence>

</complexType>

One example of use of the <Preference> element would be the following one:

<Preference name=”price”>

 <Score>

 0.8

 </Score>

</Preference>

3.1.11. Device capabilities

The <DeviceCapabilities> element is used to represent some of the features of the device

used to (potentially) determine: i) the concrete reputation computation engine to apply, ii)

how the feedback is collected and iii) how the reputation information is rendered to the

end-users (as we will see in detail in Section 3.2).

The following schema fragment defines the <DeviceCapabilities> element:

<element name="DeviceCapabilities" type="DeviceCapabilitiesType"/>

<complexType name="DeviceCapabilitiesType">

<attribute name="id" type="String"/>

<sequence>

<element name="DeviceFeature" type="DeviceFeatureType"/>

</sequence>

</complexType>

<complexType name="DeviceFeatureType">

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 27

<attribute name="name" type="String"/>

<attribute name="value" type="String"/>

</complexType>

One example of use of the <DeviceCapabilities> element would be the following one:

<DeviceCapabilities id=”dc001”>

 <DeviceFeature name=”screen-resolution” value=”800X600” />

 <DeviceFeature name=”user-input” value=”keyboard” />

 ...

</DeviceCapabilities>

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 28

3.1.12. System conditions

The <SystemConditions> element is used to represent some of the features of the

environment used to (potentially) determine: i) the concrete reputation computation

engine to apply, ii) how the feedback is collected and iii) how the reputation information is

rendered to the end-users (as we will see in detail Section 3.2).

The following schema fragment defines the <SystemConditions> element:

<element name="SystemConditions" type="SystemConditionsType"/>

<complexType name="SystemConditionsType">

<attribute name="id" type="String"/>

<sequence>

<element name="SystemCondition" type="SystemConditionType"/>

</sequence>

</complexType>

<complexType name="SystemConditionType">

<attribute name="name" type="String"/>

<attribute name="value" type="String"/>

</complexType>

One example of use of the <SystemCondition> element would be the following one:

<SystemCondition id=”sc001”>

 <SystemCondition name=”bandwidth” value=”1MB” />

 <SystemCondition name=”cpu-usage” value=”63%”” />

 ...

</SystemCondition>

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 29

3.1.13. Example

Next we present a comprehensive example of use of the <ReputationBundle> element

containing all the previously shown elements:

<ReputationBundle id=”rpb001”>

 <Reputation id=”rep001”>

 <Subject>

 AngryPigeon

 </Subject>

 <Score>

 0.68

 </Score>

 <Date type=”xs:dateTime”>

 2012-09-30T09:30:10+02:00

 </Date>

 <FeedbackBundle id=”fbb001”>

 <Feedback id=”fb001”>

 <Issuer id=”Alice”>

 <Preference name=”price”>

 <Score>

 0.4

 </Score>

 </Preference>

 <Preference name=”usability”>

 <Score>

 0.8

 </Score>

 </Preference>

 </Issuer>

 <Score>

 0.8

 </Score>

 <Datetype=”xs:dateTime”>

 2012-09-28T10:22:30+02:00

 </Date>

 <Comment>

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 30

 Nice application, easy to use

 </Comment>

 </Feedback>

 <Feedback id=”fb002”>

 <Issuer id=”Bob”>

 <Preference name=”price”>

 <Score>

 0.6

 </Score>

 </Preference>

 <Preference name=”usability”>

 <Score>

 0.6

 </Score>

 </Preference>

 </Issuer>

 <Score>

 0.4

 </Score>

 <Datetype=”xs:dateTime”>

 2012-09-27T07:26:54+02:00

 </Date>

 <Comment>

 It becomes hard from level 15

 </Comment>

 </Feedback>

 </FeedbackBundle>

 </Reputation>

 <Reputation id=”rep002”>

 <Subject>

 freeMaps

 </Subject>

 <Score>

 0.8

 </Score>

 <Date type=”xs:dateTime”>

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 31

 2012-09-30T09:30:10+02:00

 </Date>

 <FeedbackBundle id=”fbb001”>

 <Feedback id=”fb011”>

 <Issuer id=”Alice”>

 <Preference name=”price”>

 <Score>

 0.4

 </Score>

 </Preference>

 <Preference name=”usability”>

 <Score>

 0.8

 </Score>

 </Preference>

 </Issuer>

 <Score>

 0.8

 </Score>

 <Datetype=”xs:dateTime”>

 2012-09-28T10:22:30+02:00

 </Date>

 <Comment>

 I really recommend this app.

 </Comment>

 </Feedback>

 </FeedbackBundle>

 </Reputation>

</ReputationBundle>

In this example the <ReputationBundle> element contains, in turn, two <Reputation>

elements. The first one contains the reputation of an application named AngryPigeon

(within <Subject>). The reputation value is represented as a double value between 0 and

1, which in this case is 0.68 (specified in <Score>). This element also specifies the date

where the reputation has been computed (<Date>).

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 32

In addition to that, the <Reputation> element contains a <FeedbackBundle> element, which

includes set of <Feedback> elements. In this case, there are two <Feedback> elements. The

first one describes the feedback which the user identified as Alice has given about

AngryPigeon. It specifies the score she gives to the application (within the <Score> element)

date when she provides the feedback (<Date> element), some additional comments that

Alice provided (<Comment> element) and it also includes a set of parameters defining Alice’s

preferences (within the <Preference> element).

The <Preference> element describes the importance that a user gives to a certain

parameter. In this example, there are defined two parameters, namely price and usability.

The former has a relevance of 0.4 for Alice, on a scale between 0 and 1, while the latter has

a relevance of 0.8 for Alice.

The second <Feedback> element related to the application AngryPigeon describes the

feedback given by Bob. Bob scored the application with a 0.4. After taking into account

these feedbacks the reputation computed to the application AngryPigeon is 0.68.

In a similar way, the other <Reputation> element describes the reputation of an application

named freeMaps. This application has a score of 0.8 out of 1, and contains a <Feedback>

element representing the feedback given by Alice to this application.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 33

3.2. Design

Figure 5: Trust and reputation internal modules interaction

As shown in Figure 5, the trust and reputation enabler consists of the following main

internal modules (the description of the interfaces for each of these modules will be shown

in Section 3.3):

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 34

3.2.1. Device capabilities & System conditions

This module will provide some information regarding the properties, capabilities and, in

some cases, constraints owned by the device being used to interact with the trust and

reputation framework. It also provides information about the current conditions of the

environment which could mainly influence the behaviour of the framework. For instance,

network or computer resources, number of users registered on the system could be

provided to adapt the functionality of the enabler.

Both devices capabilities and system conditions might determine the way some operations

are performed, like showing reputation information, requesting for feedback or calculating

the reputation scores using one or another specific computation engine.

3.2.2. User’s profile

The user’s profile module does not actually belong to the trust and reputation enabler, but

the latter is fed by some user’s attributes from the former, in order to customize certain

services or functionalities offered by the trust and reputation enabler.

3.2.3. Feedback collector

This module is responsible for gathering the end-users’ recommendations/feedbacks

regarding a particular consumed service (an app within the context of HBB-NEXT) in a user-

friendly way, maybe depending also on the capabilities of the device in use or the system

conditions for this purpose. It is also its duty to generate the feedback object that will be

delivered to the feedback storage module.

3.2.4. Feedback storage

This module receives the feedbacks elements gathered by the feedback collector module

and efficiently stores them in such a way that are easily retrievable when needed.

3.2.5. Reputation computation engine

This module probably constitutes the core of the trust and reputation enabler, since it is its

responsibility to compute the actual reputation scores for a certain entity (an app in the

context of HBB-NEXT), based on the feedbacks given by previous users and stored in the

feedback storage module.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 35

Furthermore, this module can decide whether to apply once concrete algorithm or another

to compute the reputation scores, depending on the capabilities of the device in use and

the system conditions, as well as other external system conditions. The final goal is to apply

at each moment the most suitable reputation computation algorithm (the one obtaining

most accurate results, while consuming the minimum resources). Finally, the computed

reputation score is sent to the reputation scores storage module.

3.2.6. Reputation scores storage

This module receives reputation score elements from the reputation computation engine

and stores them in an efficient way, so that they can be later accessed by other internal

modules which use such scores as an input.

3.2.7. Reputation-based decision making engine

In order to enable the use case U.032 – “Using user identity and security mechanisms”,

where an application requires to access certain user’s attributes in order to be actually

installed and executed (see D2.1 [11]), there is the need to include this module which will

be responsible for automatically deciding whether to allow the requested exchange of

user’s attributes with an app, based on the reputation score of the latter.

3.2.8. Reputation information visualizer

This module will take several inputs from a number of other internal modules, such as

device capabilities and system conditions, user’s profile or reputation scores storage. Its

main responsibility consists of rendering the reputation scores and associated feedbacks for

each app in the app-store in a user-friendly way.

3.3. Interface

3.3.1. Internal Implementation

This section shows the description of the main operations provided by each one of the

internal modules of the trust and reputation management enabler depicted in Figure 5.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 36

3.3.1.1. Device capabilities& System conditions

The Device capabilities & System conditions internal module offers two operations, namely,

getDeviceCapabilities(), whose description can be found in Table 1 and

getSystemConditions(), whose description is depicted in Table 2.

Operation name getDeviceCapabilities()

Operation description Retrieves the specified features from the device in use

Parameter name Parameter type Parameter description

deviceFeatureName DeviceFeatureType.name
Name of the feature of the
device to be retrieved

⋮ ⋮ ⋮

deviceFeatureName DeviceFeatureType.name Name of the feature of the
device to be retrieved

Return type Return description

<DeviceCapabilities>

Returns a <DeviceCapabilities>element containing all the
specified features that could be retrieved from the device. In
case a specified feature could not be retrieved, the
<DeviceCapabilities>element will just not contain it

Table 1: Operation: getDeviceCapabilities()

Operation name getSystemConditions()

Operation description Retrieves the current system conditions
Parameter name Parameter type Parameter description

systemConditionName SystemConditionType.name
Name of the system
condition to be retrieved

⋮ ⋮ ⋮

systemConditionName SystemConditionType.name
Name of the system
condition to be retrieved

Return type Return description

<SystemConditions>

Returns a <SystemConditions>element containing all the
specified conditions that define the current environment. In
case a specified condition could not be retrieved, the
<SystemConditions>element will just not contain it

Table 2: Operation: getSystemConditions()

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 37

3.3.1.2. User’s profile

Table 3 shows the only operation provided by the User’s profile module:

getIssuerPreferences(), which is responsible for retrieving the preferences of a given

issuer, regarding the applications he/she consumes.

Operation name getIssuerPreferences()
Operation description Retrieves the user preferences of a specified issuer
Parameter name Parameter type Parameter description

issuerId IssuerType.id
Identifier of the issuer (user)
whose preferences need to be
retrieved

Return type Return description

<Issuer>
Returns a <Issuer>element containing all the <Preference>
elements representing, in turn, the user preferences of the
specified issuer

Table 3: Operation: getIssuerPreferences()

3.3.1.3. Feedback collector

The main operation offered by the Feedback collector module, named collectFeedback(),

has been described in Table 4.

Operation name collectFeedback()

Operation description Collects feedback from a specific issuer (user) about a
concrete subject (HBB-NEXT application) taking into account
the capabilities of the device in use

Parameter name Parameter type Parameter description

issuer <Issuer>
Issuer (user) providing the
feedback

subject <Subject>
Subject (HBB-NEXT
application) to be evaluated
by the issuer

deviceCapabilities <DeviceCapabilities>

Capabilities of the device used
to provide the feedback. Used
to determine how to actually
collect the feedback from the
issuer

systemConditions <SystemConditions>
Current system conditions.
Used to tune how to collect
the feedback from the issuer

Return type Return description

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 38

<Feedback>
Returns a <Feedback>element containing the score given by
the specified issuer about the given subject, as well as a
timestamp and, optionally, some opinion message (comment)

Table 4. Operation: collectFeedback()

3.3.1.4. Feedback storage

The Feedback storage module provides a couple of main operations in order to make use of

it. The first one, storeFeedback(), has been described in Table 5, while the second one,

called retrieveFeedbackBundle(), can be found in Table 6.

Operation name storeFeedback()

Operation description Stores a given feedback within the Feedbacks storage module
in such a way that it will be easily retrievable when needed
afterwards

Parameter name Parameter type Parameter description

feedback <Feedback>
Feedback to be stored within
the Feedbacks storage module

Return type Return description

boolean Returns ‘true’ if the storage of the provided <Feedback>
element was successful and ‘false’, otherwise

Table 5. Operation: storeFeedback()

Operation name retrieveFeedbackBundle()
Operation description Retrieves all the feedbacks provided to and stored in the

Feedbacks Storage module, regarding a specified subject (HBB-
NEXT application)

Parameter name Parameter type Parameter description

subject <Subject>
Subject (HBB-NEXT
application) whose feedbacks
are to be retrieved

Return type Return description

<FeedbackBundle>
Returns a <FeedbackBundle> element containing the
<Feedback> elements which, in turn, represent each of the
feedbacks provided regarding the specified subject

Table 6. Operation: retrieveFeedbackBundle()

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 39

3.3.1.5. Reputation computation engine

The main operation of the Reputation computation engine module, which in turn is one of

the key operations of the trust and reputation management enabler, has been described in

Table 7 and it is called computeReputation().

Operation name computeReputation()
Operation description Computes a reputation score for a specified subject (HBB-

NEXT application) based on the set of feedbacks provided by
previous users regarding that specific subject. The concrete
reputation computation engine applied will be selected
dynamically depending on the capabilities of the device used
to perform the computation of the reputation score

Parameter name Parameter type Parameter description

subject <Subject>
Subject (HBB-NEXT
application) whose reputation
is to be computed

feedbacks <FeedbackBundle>
Set of feedbacks that previous
users provided regarding the
specified subject

deviceCapabilities <DeviceCapabilities>
Capabilities of the device used
to compute the reputation
score of the specified subject

systemConditions <SystemConditions>

Current system conditions,
used to select the most
suitable reputation
computation engine

Return type Return description

<Reputation>

Returns a <Reputation> element containing the computed
reputation score for the specified subject, as well as a
timestamp and, optionally, the set of feedbacks provided by
previous users regarding that specific subject

Table 7: Operation: computeReputation()

3.3.1.6. Reputation scores storage

This internal module, Reputation scores storage, offers three main operations to the rest of

internal modules within the trust and reputation management enabler, namely: i)

storeReputation(), described in Table 8, ii) retrieveReputationBundle(), shown in Table 9,

and iii) retrieveReputation(), explained in Table 10.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 40

Operation name storeReputation()

Operation description Stores a given reputation within the Reputation scores storage
module in such a way that it will be easily retrievable when
needed afterwards

Parameter name Parameter type Parameter description

reputation <Reputation>
Reputation to be stored within
the Reputation scores storage
module

Return type Return description

boolean Returns ‘true’ if the storage of the provided <Reputation>
element was successful and ‘false’, otherwise

Table 8. Operation: storeReputation()

Operation name retrieveReputationBundle()
Operation description Retrieves each reputation stored in the Reputation scores

storage module, regarding each of the specified subjects (HBB-
NEXT applications)

Parameter name Parameter type Parameter description

subject <Subject>
Subject (HBB-NEXT
application) whose reputation
is to be retrieved

⋮ ⋮ ⋮

subject <Subject>
Subject (HBB-NEXT
application) whose reputation
is to be retrieved

Return type Return description

<ReputationBundle>
Returns a <ReputationBundle> element containing the
<Reputation> elements which, in turn, represent each of the
reputations stored regarding each of the specified subjects

Table 9: Operation: retrieveReputationBundle()

Operation name retrieveReputation()
Operation description Retrieves the reputation stored in the Reputation scores

storage module, regarding the specified subject (HBB-NEXT
application)

Parameter name Parameter type Parameter description

subject <Subject>
Subject (HBB-NEXT
application) whose reputation
is to be retrieved

Return type Return description

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 41

<Reputation>
Returns a <Reputation> element which represents the
reputations stored in the Reputation scores storage module
regarding the specified subject

Table 10. Operation: retrieveReputation()

3.3.1.7. Reputation-based decision making engine

The Reputation-based decision making engine module offers only one main operation

named allowAccessToIdentityAttributes(), whose description can be observed in Table

11.

Operation name allowAccessToIdentityAttributes()
Operation description Determines whether to allow or not a specified subject to

have access to (some of) the identity attributes of a specified
issuer, based on the reputation of the former from the
perspective of the latter

Parameter name Parameter type Parameter description

issuer <Issuer>

End user who wants to
consume the specified subject
and whose identity attributes
need to be retrieved

subject <Subject>

Subject (HBB-NEXT
application) requesting access
to certain identity attributes of
the specified issuer

Return type Return description

{<Permit>|<Deny>}
Returns either a <Permit> element indicating that the
specified subject is trustworthy enough to have access to the
identity attributes of the specified issuer, or <Deny> otherwise

Table 11. Operation: allowAccessToIdentityAttributes()

3.3.1.8. Reputation information visualizer

Finally, the Reputation information visualizer provides the following four main operations:

 renderReputationBundle(), described in Table 12

 renderReputation(), described in Table 13

 renderFeedbackBundle(), described in Table 14

 renderFeedback(), described in Table 15

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 42

Operation name renderReputationBundle()
Operation description Renders a given reputation bundle according to the

capabilities of the device in use and the preferences of the
user accessing the reputation information

Parameter name Parameter type Parameter description

reputationBundle <ReputationBundle>
Reputation bundle to be
rendered by the Reputation
information visualizer module

deviceCapabilities <DeviceCapabilities>
Capabilities of the device used
to render the specified
reputation bundle

systemConditions <SystemConditions>

Current conditions of the
environment used to
determine how to render the
reputation information

issuer <Issuer>
Issuer (user) accessing the
reputation information

Return type Return description

HTML5

Returns an HTML5 template containing the rendering of the
given <ReputationBundle> element according to the
capabilities of the device in use and the current system
conditions. Such HTML5 template can be further customized
to be adapted to the desired style.

Table 12. Operation: renderReputationBundle()

Operation name renderReputation()
Operation description Renders a given reputation according to the capabilities of the

device in use and the preferences of the user accessing the
reputation information

Parameter name Parameter type Parameter description

reputation <Reputation>
Reputation to be rendered by
the Reputation information
visualizer module

deviceCapabilities <DeviceCapabilities>
Capabilities of the device used
to render the specified
reputation element

systemConditions <SystemConditions>

Current conditions of the
environment used to
determine how to render the
specified reputation element

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 43

issuer <Issuer>
Issuer (user) accessing the
reputation information

Return type Return description

HTML5

Returns an HTML5 template containing the rendering of the
given <Reputation> element according to the capabilities of
the device in use and the current system conditions. Such
HTML5 template can be further customized to be adapted to
the desired style.

Table 13. Operation: renderReputation()

Operation name renderFeedbackBundle()
Operation description Renders a given feedback bundle according to the capabilities

of the device in use and the preferences of the user accessing
the reputation information

Parameter name Parameter type Parameter description

feedbackBundle <FeedbackBundle>
Feedback bundle to be
rendered by the Reputation
information visualizer module

deviceCapabilities <DeviceCapabilities>
Capabilities of the device used
to render the specified
reputation bundle

systemConditions <SystemConditions>

Current conditions of the
environment used to
determine how to render the
specified feedback bundle

issuer <Issuer>
Issuer (user) accessing the
reputation information

Return type Return description

HTML5

Returns an HTML5 template containing the rendering of the
given <FeedbackBundle> element according to the capabilities
of the device in use and the current system conditions. Such
HTML5 template can be further customized to be adapted to
the desired style.

Table 14: Operation: renderFeedbackBundle()

Operation name renderFeedback()
Operation description Renders a given feedback according to the capabilities of the

device in use and the preferences of the user accessing the
reputation information

Parameter name Parameter type Parameter description

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 44

feedback <Feedback>
Feedback to be rendered by
the Reputation information
visualizer module

deviceCapabilities <DeviceCapabilities>
Capabilities of the device used
to render the specified
feedback element

systemConditions <SystemConditions>

Current conditions of the
environment used to render
the specified feedback
element

issuer <Issuer>
Issuer (user) accessing the
reputation information

Return type Return description

HTML5

Returns an HTML5 template containing the rendering of the
given <FeedbackBundle> element according to the capabilities
of the device in use and the current system conditions. Such
HTML5 template can be further customized to be adapted to
the desired style.

Table 15: Operation: renderFeedback ()

3.3.1.9. Summary

This section just lists, as a summary, all the operations offered by each one of the internal

modules of the trust and reputation management enabler.

 Device capabilities

• getDeviceCapabilities()Table 1

 User’s profile

• getIssuerPreferences()Table 3

 Feedback collector

• collectFeedback()Table 4

 Feedback storage

• storeFeedback()Table 5

• retrieveFeedbackBundle()Table 6

 Reputation computation engine

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 45

• computeReputation()Table 7

 Reputation scores storage

• storeReputation()Table 8

• retrieveReputationBundle()Table 9

• retrieveReputation()Table 10

• Reputation-based decision making engine

• allowAccessToIdentityAttributes()Table 11

• Reputation information visualizer

• renderReputationBundle()Table 12

• renderReputation()Table 13

• renderFeedbackBundle()Table 14

• renderFeedback()Table 15

3.3.2. External interfaces

This section shows the description of the interfaces that other external modules or enablers

need in order to interact with the trust and reputation management enabler. As shown in

Figure 6, two external interfaces are defined in order to interact with the internal modules

to resolve reputation-based request.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 46

Figure 6: External interfaces design

3.3.2.1. Web-based enabler interface

Since the trust and reputation management enabler could be deployed in an external

server, a communication process needs to be defined in order to request information to this

enabler. The communication is achieved according to the REST constraints, in such a way

that the requesters are able to send messages to this enabler using the HTTP method.

The enabler deploys a module in charge of processing HTTP requests and calling the

necessary internal modules to process and answer the query.

Four main types of functions are defined to communicate with the enabler:

1. requestReputationInformation

2. allowAccessToIdentityAttributes

3. provideFeedback

4. render

Function: Request Reputation Information

Description: See 3.3.2.2.1

Method: GET Resource: /reputation/{subjectid}

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 47

Parameters:

subjectid The id of the subject (e.g. HBB-NEXT application) whose reputation is
to be retrieved

Function: allowAccessToIdentityAttributes

Description: See 3.3.2.2.2

Method: GET Resource: /reputation/{subjectid}/issuers/{issuerid}

Parameters:

subjectid The id of the subject (e.g. HBB-NEXT application) whose reputation is
to be retrieved

issuerid The id of the end user who wants to consume the specified subject

Function: provideFeedback

Description: See 3.3.2.2.3

Method: POST Resource: /reputation/{subjectid}

Parameters:

subjectid The id of the subject (e.g. HBB-NEXT application) whose reputation is
being provided

BODY The body of the message shall contain reputation parameters [ref.
this doc, sec. 3.1.2]

Function: render

Description: See 3.3.2.2.4

Method: GET Resource: /render/{renderelementid}/issuers/{issueri
d}/devices/{deviceid}

Parameters:

renderelementid The id of the renderElement (ReputationBundle, Reputation,
FeedbackBundle or Feedback) to be rendered

issuerid The id of the end user who will be shown the rendering to

deviceid The id of the device used to show the specified element

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 48

3.3.2.2. Library-based enabler interfaces

The trust and reputation management enabler is also planned to be used as a library in

order for other external enablers or modules to directly import its functionality. This library

is used by the Web-based enabler interface to interact with the internal modules in order to

process the received requests. The next subsections define the main operations exposed in

that library.

3.3.2.2.1. Operation: Request Reputation Information

The trust and reputation management enabler exposes an operation named

requestReputationInformation(), to be used by other external enablers or modules in

order to retrieve reputation information about a specific subject (an HBB-NEXT application

in the context of HBB-NEXT). Table 16 shows the description of this operation.

Operation name requestReputationInformation()
Operation description Retrieves the reputation information owned by the trust and

reputation management enabler regarding a specified subject
(HBB-NEXT application)

Parameter name Parameter type Parameter description

subject <Subject>
Subject (HBB-NEXT
application) whose reputation
is to be retrieved

Return type Return description

<Reputation>
Returns a <Reputation> element which represents the
reputation information owned by the trust and reputation
management enabler regarding the specified subject

Table 16: Operation: requestReputationInformation()

3.3.2.2.2. Operation: Request reputation-based decision

This enabler also exposes an operation named allowAccessToIdentityAttributes(), in

order to obtain a decision regarding allowing or not a specific subject to have access to

some issuer’s attributes. The description of this operation can be observed in Table 17.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 49

Operation name allowAccessToIdentityAttributes()
Operation description Determines whether to allow or not a specified subject to

have access to (some of) the identity attributes of a specified
issuer, based on the reputation of the former from the
perspective of the latter

Parameter name Parameter type Parameter description

Issuer <Issuer>

End user who wants to
consume the specified subject
and whose identity attributes
need to be retrieved

Subject <Subject>

Subject (HBB-NEXT
application) requesting access
to certain identity attributes of
the specified issuer

Return type Return description

{<Permit>|<Deny>}
Returns either a <Permit> element indicating that the
specified subject is trustworthy enough to have access to the
identity attributes of the specified issuer, or <Deny> otherwise

Table 17: Operation: allowAccessToIdentityAttributes()

3.3.2.2.3. Operation: Provide user feedback

This enabler exposes an operation named provideFeedback(), in order to allow other

modules to present a feedback given by a user about a specific subject. The description of

this operation can be observed in Table 18.

Operation name provideFeedback()
Operation description Receive a feedback given by a user about a specific subject

taking into account the capabilities of the device used by the
user and the current system conditions. The feedback will be
included in the feedback storage to be taken into account
when computing future reputation values about the given
subject.

Parameter name Parameter type Parameter description

Issuer <Issuer>
Issuer (user) providing the
feedback

Subject <Subject>
Subject (HBB-NEXT
application) to be evaluated
by the issuer

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 50

deviceCapabilities <DeviceCapabilities>

Capabilities of the device used
to provide the feedback. Used
to determine how to actually
collect the feedback from the
issuer

systemConditions <SystemConditions>

Current conditions of the
environment. Used to
determine how to actually
collect the feedback from the
issuer

Return type Return description
void

Table 18. Operation: provideFeedback()

3.3.2.2.4. Operation: Render

In order to visualize the reputation and feedback information, the enabler offers an

operation named render(). This operation accepts different attributes depending on the

element it has to render. The description of this operation can be observed in Table 19.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 51

Operation name render()

Operation description Renders a given element (Reputation, ReputationBundle,
Feedback or FeedbackBundle) according to the capabilities of
the device in use, the current system conditions and the
preferences of the user who the rendering will be shown to

Parameter name Parameter type Parameter description

issuer <Issuer>
Issuer (user) who will be
shown the rendering to

deviceCapabilities <DeviceCapabilities>
Capabilities of the device used
to render the specified
element

systemConditions <SystemConditions>
Current conditions of the
environment used to render
the specified element

renderElement

{<ReputationBundle>
|<Reputation>
|<FeedbackBundle>
|<Feedback>}

The element to be rendered

Return type Return description

boolean Returns ‘true’ if the gathering and storage of the feedback was
successful and ‘false’, otherwise

Table 19. Operation: render() Sequence Diagrams

This last section presents and describes a set of sequence diagrams depicting the main

operations and functionalities of the trust and reputation management enabler within the

context of HBB-NEXT.

3.3.3. U.027 – Download app from app-store

The first sequence diagram, shown in Figure 7, represents the use case U.027 introduced in

D2.1 [11], and entitled “Download app from app-store”.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 52

Figure 7. Sequence diagram for U.027 – Download app from app-store (see D2.1 [11])

Its main steps are as follows:

1. User accesses the app-store portal through the STB

2. The STB queries the actual app-store about the recommended applications for the

user (or users) accessing the app-store

3. The app-store provides the recommended applications to the STB

4. The recommended applications are shown to the user

5. The user selects application XYZ

6. The STB queries the app-store about the reputation information regarding

application XYZ (requestReputationInformation(),Table 16)

 sd U.027 - Download app from app-store

end-user

STB app-store

• either query the
reputation score or
compute it

• optionally, retrieve
previous ratings and
comments

1. open app-store()

2. retrieve recommended apps (WP5)

3. recommended apps()

4. show recommended apps()

5. select app XYZ()

6. retrieve reputation
info about app XYZ()

7. get reputation info
about app XYZ()

8. reputation info about app XYZ()

9. show reputation
info about app XYZ()

10. download app XYZ()

11. install app XYZ()

12. app XYZ()

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 53

7. The app-store either computes a customized reputation score

(computeReputation(), Table 7) or just retrieves a common one already stored

(retrieveReputation(),Table 10). Optionally, it can also provide feedbacks given

by previous users (retrieveFeedbackBundle(), Table 6).

8. The reputation information about application XYZ is given back to the STB

(<Reputation> element, section 3.1.2).

9. The reputation information about application XYZ is rendered to the user

(renderReputation(), Table 13).

10. The user, based on the reputation of the application XYZ, decides to download it.

11. The application XYZ is actually installed.

12. The user can now enjoy the application XYZ.

3.3.4. U.031 – Mark app as trusted

The second sequence diagram, shown in Figure 8, represents the use case U.031 introduced

in D2.1 [11], and entitled “Mark app as trusted”.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 54

Figure 8. Sequence diagram for U.031 – Mark app as trusted (see D2.1 [11])

Its main steps are as follows:

1. The user has downloaded and installed the application XYZ (as shown in

section3.4.1)

2. The user wants to provide a feedback regarding the application XYZ

3. The request to provide feedback regarding the application XYZ is forwarded to the

app-store

4. The app-store delivers the feedback form to be used to collect the feedback from

the user regarding application XYZ (collectFeedback(),Table 4)

5. The feedback form is rendered and presented to the user

6. The user fills in the feedback form with regards to the application XYZ and sends it

back to the STB (<Feedback> element, section3.1.7)

7. The filled feedback form is forwarded to the app-store

sd U.031 - Mark app as trusted

end-user

STB app-store

either compute a new
reputation score or
store the feedback in a
data base

1. app XYZ()

2. provide feedback()

3. provide feedback()

4. feedback form()

5. feedback form()

6. feedback wrt app XYZ()

7. feedback wrt app XYZ()

8. update reputation
info about app XYZ()

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 55

8. The reputation information regarding the application XYZ is updated, which actually

means that either the feedback is just stored (storeFeedback(),Table 5) or, in

addition to that, a new and updated reputation score for application XYZ is also

computed (computeReputation(),Table 7)

3.3.5. U.032 – Using user identity and security mechanisms

The third and last sequence diagram, shown in Figure 9, represents the use case U.032

introduced in D2.1 [11], and entitled “Using User Identity and Security Mechanisms”.

Figure 9. Sequence diagram for U.032 – Using user identity and security mechanisms
(see D2.1 [11])

Its main steps are as follows:

1. The user selects the application XYZ to download and install it (step 5 in the

sequence diagram shown in Figure 7, section 3.4.1)

 sd U.032 - Using User Identity and Security Mechanisms

end-user

STB app-store

(from Sequence
diagram)

either automatically or
only after the explicit
end-user's consent

• either query the
reputation score or
compute it

• optionally, retrieve
previous ratings
and comments

1. select app XYZ()

2. app XYZ requires
user's attr ABC()

3. retrieve reputation
info about app XYZ()

4. get reputation info
about app XYZ()5. reputation info

about app XYZ()

6 .install app XYZ based
on its reputation()

7. app XYZ()

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 56

2. However, the application XYZ requires certain user’s identity attributes such as e-

mail, age or credit card in order to be installed

3. The STB queries the app-store about the reputation information regarding

application XYZ (requestReputationInformation(),Table 16)

4. The app-store either computes a customized reputation score

(computeReputation(),Table 7) or just retrieves a common one already stored

(retrieveReputation(),Table 10). Optionally, it can also provide feedbacks given

by previous users (retrieveFeedbackBundle(),Table 6)

5. The reputation information about application XYZ is given back to the STB

(<Reputation> element, section 3.1.2)

6. Then, based on the reputation of the application XYZ, it is allowed or not to access

to the requested user’s identity attributes

(allowAccessToIdentityAttributes(), Table 11)

7. In case the application XYZ is allowed to access the requested user’s identity

attributes, it is actually installed and delivered to the user

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 57

4. Identity Management Module
This chapter describes one main part of the delivery of WP3: The Identity Management

module. The module contains all users, basic information about them, security credentials,

and connections between users, devices, and contexts.

IdM will provide an API to access these parameters easily, and in a future stage add some

interpretation to them as well to enable services building logic upon them.

4.1. Data model

This section contains the data model.

Note: The data model field obligation is indicated with ‘M/O’ - meaning

‘mandatory/optional’. The amount of objects is indicated in the occurrences column with

‘1/n’ - meaning ‘unique/multiple’.

Note: The JSON type ‘boolean’ summarizes true/false as permitted values for the object.

Note: The JSON type ‘date’ specifies a string as permitted value for the object in the format

YYYY-MM-DD acc. ISO 8601, where YYYY equals the four-digit year, MM equals the two-digit

month (01=January, etc.), and DD equals the two-digit day of month (01 through 31).

Note: The first value in an array is the default value. Other values shall be used or can be

selected acc. particular use cases.

4.1.1. User

The user data model is shown in Table 20. The JSON type refers to the specification

from www.json.org. It is for example implicit that the password shall not be provided as

‘bare string’ but rather MD5 hashed (or any format that is required by apps).

http://www.json.org/

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 58

Table 20. User data model

The data model may be extended for future API versions.

The ‘link’ type is a reference pointing to the API ID for the respective element. In a later

version of the API more than just bare objects/arrays will be provided. The IdM enabler is

aimed provide more intelligence for providing related information. Links between elements

can be weighted, i.e., they are not only directed connections between two elements

(whereas ‘device’ is the origin), but may have a label (weight) that specifies the connection

further. This can be used to parameterize connections between users further (not only that

I know another user, but how).

The multi-modal information is expected to be a transparently passed BASE64 encoded

string.

Level 1 Level 2 Level 3 JSON Type JSON Object Obligation Ocurrences
(preliminary)

Identifier (unique) object M 1
ID string id M 1
Alias array alias O n

Personal information object M 1
Gender string gender O 1
First Name string first_name M 1
Last Name string last_name O 1
Date of birth date dob O 1
Contact means object O 1

E-mail addresses array mail O n
Phone number array phone O n

Credentials object M 1
Password string password M 1
PIN number (digits) pin O 1
Multi-modal information string mmi O n

Links object O 1
Device link << device O n
User (incl. weight: family,
friend, implicit/explicit, etc.) link users_id O n
Context link << context O 1
Profile link profile O 1

API version: 1
Date: 06.09.2012

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 59

Note: Table 20 shows only the high level JSON type. Due to the fact that this specification is

not final the content is subject to further studies. This includes primarily, but is not limited

to, all nested arrays and objects.

A JSON sample of the data model is shown below:

{

 "alias": "john.doe",

 "created_at": "2012-09-06T13:56:02Z",

 "dob": "1951-01-13",

 "first_name": "John",

 "gender": "m",

 "id": 3,

 "last_name": "Doe",

 "mail": "john.doe@example.net",

 "mmi": "SEJCLU5leHQ=",

 "password": "5ebe2294ecd0e0f08eab7690d2a6ee69",

 "phone": "+12345678901",

 "pin": 1234,

 "profile": null,

 "updated_at": "2012-09-06T15:15:07Z",

 "users_id": null

}

It could be the body of a response to the following HTTP request:
GET /users/3.json HTTP/1.1

User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0

OpenSSL/0.9.8r zlib/1.2.5

Host: localhost:3000

Accept: */*

4.1.2. Device

The device data model is shown in Table 21. The JSON type refers to the specification from

www.json.org.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 60

Table 21. Device data model

The data model may be extended for future API versions.

The properties element can contain device specific sub-elements. There is currently no

need to define that, as it is used per service and data is transparent to the API. This

statement may however be subject to future change.

The ‘link’ type is a reference pointing to the API ID for the respective element. Links

between elements can be weighted, i.e., they are not only directed connections between

two elements (whereas ‘device’ is the origin), but may have a label (weight) that specifies

the connection further. This can be used to parameterize the relation of e.g. a user to a

device (e.g. watcher, owner, user, etc.). Further logic can process and use this information.

4.1.3. Context

The context data model is shown in . The JSON type refers to the specification from

www.json.org.

Level 1 Level 2 Level 3 JSON Type JSON Object Obligation Ocurrences
(preliminary)

Identifier (unique) object M 1
ID string id M 1
Alias string alias O n

Properties (unique name attributes/properties/settings/etc. object M 1
State* (active/not active) boolean state O 1

Links object O 1
User (incl. weight:
family, friend,
implicit/explicit, etc.) link users_id O n
Context link << context O 1

Note *: This attribute is still subject to discussion. Can be integrated with context.

API version: 1
Date: 06.09.2012

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 61

Table 22. Context data model

The data model may be extended for future API versions.

The ‘link’ type is a reference pointing to the API ID for the respective element.

It is for further study how actual and usual contexts are mapped.

The status might be omitted in the future, if the activity mapping is handled by separation

of responsibilities between the enabler.

Contexts play a major role in the implementation of the identity management. The IdM uses

the context element to map the usual and actual context of a user. While the context

assignment in WP3 is rather static and only its activity changes, the context assignment in

scope of WP5 (see D5.2 [8]) is dynamic.

The “usual context” represents the context (defined in D3.1 [9]), in which a user is usually

present, i.e., has been present before. It is relevant for defining the sub-set for multi-modal

identification.

The “active context” represents the current context of a user, where he is presently active

in. It is used for interaction.

“Context” is used to statically group users and devices. They can, however, still have direct

relations.

Level 1 Level 2 Level 3 JSON Type JSON Object Obligation Ocurrences
(preliminary)

Identifier (unique) object M 1
ID string id M 1
Alias string alias O n

State (active/not active) boolean state M 1

Links object O 1
User (incl. weight: family,
friend, implicit/explicit, etc.) link users_id O n
Device link devices_id O n

Note: The context may be split up in active and usual contexts. Data model thus subject to change.

API version: 1
Date: 06.09.2012

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 62

4.2. Design

The module consists of front-end, back-end, and database layers.

The front-end is an HTTP web service in the form of a RESTful API. The back-end contains

the module logic and communicates with the data base layers.

4.2.1. Database implementation

4.2.1.1. Description

The data model shows the three main domains:

 User

 Device

 Context

Typically, users are permanently related to each other and to their respective devices.

The context maps a temporary relation between users (that may or may not be

permanently related, but most likely are) and between devices.

Relations can have a “weight”, i.e., roles that further define the relation, but this relation is

not mandatory. Users can administer other users (e.g. TV owner can create user accounts)

and also devices (e.g. device owner can configure the device). Users can also use devices –

with restricted permissions.

Figure 10 shows the relations between the domains in both identity and profile

management.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 63

Figure 10. Relations between identity and profile management domains

A user can have relations to many other users.

A user can have many devices. Devices must belong to one or many users and their relation

is weighted.

A user can only be active in a single context. An active context can have one or many users

attached and its relation may be weighted towards the controlling user.

A user can be part of many usual contexts. A usual context can have users attached.

A device can only be active in a single context. An active context can have one or many

devices attached and its relation may be weighted towards the controlling device.

A device can be part of many usual contexts. A usual context can have devices attached.

A user can have only one profile. A profile is always assigned to a particular user. Services

may be assigned to profiles.

Relations of profile and service are covered in section 4.3.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 64

4.2.1.2. Database layout

users

 integer :id

 string :alias

 datetime :created_at

 datetime :updated_at

 string :first_name

 string :last_name

 string :gender

 date :dob

 string :mail

 string :phone

 string :password

 integer :pin

 text :mmi

 integer :users_id

 integer :profile

devices

 boolean :state

 integer :users_id

 string :alias

contexts

 boolean :state

 integer :users_id

 integer :devices_id

 string :alias

Each table has id (integer), created timestamp, and modified timestamp fields. The time

stamp has the date format ‘2012-01-01 13:25:37 UTC’.

The data format is subject to future change, as currently the table-linking ‘_id’ fields allow

only singular links (integer). Objects and arrays respectively allow weighted and non-

weighted multi-links.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 65

4.3. Interface

4.3.1. Internal Implementation

The identity management module has been implemented acc. the design that is described

in section 4.2.

4.3.2. API

The basic functions of the identity management component are described in D6.1.1, sec.

6.3.4 [10]. The mentioned functions in this deliverable are not elaborated and mapped to

the API.

Note: In case no parameters are added, this shall be indicated by inserting ‘n/a’ (not

applicable) into the table.

Note: Data types for the parameters are stated in section 4.1 covering the data model.

Function (Ref. D6.1.1): Retrieve, add, modify, delete user in the system

Function: Retrieve user

Method: GET Resource: /users/{userid}

Parameters:

userid The id of the user that shall be retrieved.

BODY The body of the message shall contain basic user parameters acc.
[ref. this doc, sec. 4.1]

Function (Ref. D6.1.1): Retrieve, add, modify, delete user in the system

Function: Add user

Method: POST Resource: /users

Parameters:

BODY The body of the message may contain user parameters acc. [ref. this
doc, sec. 4.1]. These parameters are provisioned to the created user.

Function (Ref. D6.1.1): Retrieve, add, modify, delete user in the system

Function: Modify user

Method: PUT Resource: /users/{userid}

Parameters:

userid The id of the user that shall be modified.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 66

BODY The body of the message shall contain user parameters acc. [ref. this
doc, sec. 4.1]. These parameters are provisioned to the user that
shall be updated. They will override existing parameters.

Function (Ref. D6.1.1): Retrieve, add, modify, delete user in the system

Function: Delete user

Method: DELETE Resource: /users/{userid}

Parameters:

userid The id of the user that shall be deleted.

Function (Ref. D6.1.1): Add, modify, delete user from a context

Function: Create context

Method: POST Resource: /contexts

Parameters:

n/a n/a

Function (Ref. D6.1.1): Add, modify, delete user from a context

Function: Add user to context

Method: POST Resource: /contexts/{contextid}/users?id={userid}

Parameters:

contextid The context that is being modified.

userid The ID of the user to be added.

Function (Ref. D6.1.1): Add, modify, delete user from a context

Function: Modify user in context (necessity to be discussed in further study)

Method: PUT Resource: /contexts/{contextid}/users/{userid}

Parameters:

contextid The context that is being modified.

userid The ID of the user to be modified.

Function (Ref. D6.1.1): Add, modify, delete user from a context

Function: Delete user from context

Method: DELETE Resource: /contexts/{contextid}/users/{userid}

Parameters:

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 67

contextid The context that is being modified.

userid The ID of the user to be deleted.

Function (Ref. D6.1.1): Add, modify, delete user from a context

Function: Delete context

Method: DELETE Resource: /contexts/{contextid}

Parameters:

contextid The context that is being deleted.

Function (Ref. D6.1.1): Retrieve users active in a context (at the present moment)

Function: see above

Method: GET Resource: /contexts/{contextid}/users

Parameters:

contextid The context that is being used.

Function (Ref. D6.1.1): Retrieve users relevant for a context (usually active there)

Function: see above

Method: GET Resource: /contexts/{contextid}/users

Parameters:

contextid The context that is being used.

Function (Ref. D6.1.1): Retrieve devices active in a context (at the present moment)

Function: see above

Method: GET Resource: /contexts/{contextid}/devices

Parameters:

contextid The context that is being used.

Function (Ref. D6.1.1): Retrieve devices relevant for a context (usually active there)

Function: see above

Method: GET Resource: /contexts/{contextid}/devices

Parameters:

contextid The context that is being used.

Function (Ref. D6.1.1): Retrieve, add, modify, delete device in the system

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 68

Function: Retrieve device

Method: GET Resource: /devices/{deviceid}

Parameters:

deviceid The device id of the device that shall be retrieved.

BODY The body of the message shall contain basic device parameters acc.
[ref. this doc, sec.]

Function (Ref. D6.1.1): Retrieve, add, modify, delete device in the system

Function: Add device

Method: POST Resource: /devices

Parameters:

BODY The body of the message shall contain device user parameters acc.
[ref. this doc, sec.]

Function (Ref. D6.1.1): Retrieve, add, modify, delete device in the system

Function: Modify device

Method: PUT Resource: /devices/{deviceid}

Parameters:

deviceid The device id of the device that shall be retrieved.

BODY The body of the message shall contain basic device parameters acc.
[ref. this doc, sec.]

Function (Ref. D6.1.1): Retrieve, add, modify, delete device in the system

Function: Delete device

Method: DELETE Resource: /devices/{deviceid}

Parameters:

deviceid The device id of the device that shall be retrieved.

Function (Ref. D6.1.1): Add, modify, delete device from a context

Function: Add device to context

Method: POST Resource: /contexts/{contextid}/devices?id={deviceid}

Parameters:

contextid The context that is being modified.

deviceid The ID of the device to be added.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 69

Function (Ref. D6.1.1): Add, modify, delete device from a context

Function: Modify device in context (necessity to be discussed in further study)

Method: PUT Resource: /contexts/{contextid}/devices/{deviceid}

Parameters:

contextid The context that is being modified.

deviceid The ID of the device to be added.

Function (Ref. D6.1.1): Add, modify, delete device from a context

Function: Delete device from context

Method: DELETE Resource: /contexts/{contextid}/devices/{deviceid}

Parameters:

contextid The context that is being modified.

deviceid The ID of the device to be added.

Function (Ref. D6.1.1): Retrieve devices of a user

Function: see above

Method: GET Resource: /users/{userid}/devices

Parameters:

userid The user that is being used.

Function (Ref. D6.1.1): Retrieve, add, modify, delete relation between a user (relation, value)

Function: Retrieve relation between users

Method: GET Resource: /users/{userid}/users

Parameters:

n/a n/a

Function (Ref. D6.1.1): Retrieve, add, modify, delete relation between a user (relation, value)

Function: Add/modify relation between users

Method: PUT Resource: /users/{userid1}/users?id={userid1}&bi={bi}&w={w}

Parameters:

userid1 ID of user to be modified

userid2 ID of user relation to be added

bi Indicator whether relation shall be added bilateral (default: no)

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 70

w weight of the relation

Function (Ref.
D6.1.1):

Retrieve, add, modify, delete relation between a user (relation, value)

Function: Delete relation between users

Method: DELETE Resource: /users/{userid1}/users?id={userid1}&bi={bi}

Parameters:

userid1 ID of user to be modified

userid2 ID of user relation to be deleted

bi Indicator whether relation shall be added bilateral (default: no)

Function
(description):

Supporting function

Function: API description: Retrieve available resources

Method: GET Resource: /doc

Parameters:

n/a n/a

The resource that is mentioned in the API description is adhered to the root URL, for example:

 Root URL: https://idm.example.org/api/v1/

 Full URL for first case: https://idm.example.org/api/v1/user/a1b2c3

The response code will provide general information about the success of the request. The

response headers carry information relevant to the request and further requests. The

response bodies of all requests will contain the complete data sets.

Data can be searched using the search string for the value in the form

/users/?q=Jon&key=firstName. The answer will be provided in the body of the HTTP

response message.

Unless specified otherwise, the default content is used in the body. The requested resource

might specify the content type in case multiple content types are offered (e.g. /users.json or

/users.xml).

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 71

The following functions (based on D6.1.1 [10]) are not explicitly mapped in the API

description above, but rather build with the existing commands:

 Provide multi-modal vectors for users relevant for a context (single modes, all

modes)

 Fulfill requirements of security management (e.g. credentials)

 Retrieve, add, modify, delete roles of a user

 Attach, detach user to device (PUT /users/{userid}?device={deviceid})

Further documentation will provide samples how this can be done.

4.4. Sequence Diagrams

Major functions (see section 4.3.2) will be put in a sample context using sequence diagrams

in the future.

The sample use case section 4.3.3 from deliverable D2.1 [11] is depicted in Figure 11:

 Peter + Paul on Peters couch

 Paul opens smartphone app

 Paul joins group

 Rec. personal EPG

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 72

Figure 11. Sequence diagram for the flow in deliverable [D2.1 [11], sec 4.3.3]

GET /users?q=STBID?key=device (STB IdM)

Retrieve users that are usually active on device. Used for recognition (omitted in this

simplified sample).

POST /contexts (STB IdM)

Create new context.

PUT /contexts/ID&state=true (STB IdM)

Context is changed to active.

PUT /contexts/ID/devices?id=STBID (STB IdM)

STB is added to context.

PUT /contexts/ID/users?id=PeterID (STB IdM)

Peter is added to the context. It is out of scope of this scenario how it is done. It should be

done by recognition (after probability threshold is reached) or implicit selection at the STB.

PUT /contexts/ID/users?id=PaulID (STB IdM)

Paul is added to the context. It is out of scope of this scenario how it is done. It should be

done by recognition or implicit selection at the STB.

PUT /contexts/ID/devices?id=PhoneID (Phone IdM)

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 73

Paul’s phone is added to the context. It is out of scope of this scenario how it is done. Acc.

the scenario description, the STB recognizes the device. It can either add it (by exchanging

an ID) or exchange authorization parameters that permit the device to add itself to the

context.

GET /epg?context=ID (STB EPG)

Sample request for EPG for a certain context.

GET /contexts/ID (EPG PE)

EPG requests personalized profile for context.

GET /contexts/ID/users (PE IdM)

PE requests all active users in the given context. The devices are not relevant for this use

case.

foreach user: GET /users/ID?q=profileID (PE IdM)

The PE requests the profile IDs for all active users.

foreach profileID: GET /profiles/ID (PE PM)

The PE requests the single user profile for all active users to form the group profile.

Note: This sample does not assume that multi-modal recognition is used. The multi-modal

interface would in this case request all users of the device and their multi-modal

identification array and then provision the recognized users. A further step would identify

the users beyond threshold probability as identified.

Note: All transactions that have no response have a direct implicit response containing the

requested data in the message body.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 74

5. Profile Management Module
This chapter describes the profile management module.

5.1. Data model

This section contains the data model.

Note: The data model field obligation is indicated with ‘M/O’ - meaning

‘mandatory/optional’. The amount of objects is indicated in the occurrences column with

‘1/n’ - meaning ‘unique/multiple’.

5.1.1. User Profile

The profile data model is shown in Table 23.

Table 23. Profile data model

The data model may be extended for future API versions.

For providing the highest flexibility, service parameters in the profile and service definitions

are decoupled. Thus, the service ID is used to link to the service profile. Profile dependent

parameters can be added if necessary

Level 1 Level 2 Level 3 JSON Type JSON Object Obligation Ocurrences
(preliminary)

Identifier (unique) object M 1
ID string id M 1
Alias array alias O n

Services object O n
Service ID string service M 1
User ID in service string suid O 1
Permissions object permissions O 1
Attributes object attributes O 1

Attr. n object O n

Links object M 1
User link user M 1

API version: 1
Date: 08.09.2012

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 75

5.1.2. Service Profile

The service data model is shown in Table 24.

Table 24. Service data model

The data model may be extended for future API versions.

The service profile defines services that the user profile references to. For now, it specifies

the address of the service. Parameters can be added if necessary.

5.2. Design

The module consists of front-end, back-end, and database layers.

The front-end is an HTTP web service in the form of a RESTful API. The back-end contains

the module logic and communicates with the data base layers.

5.2.1. Database implementation

5.2.1.1. Description

The data model shows the two main domains:

 Profile

 Service

Figure 10 in section 4.2.1.1 shows the relations between the domains in both identity and

profile management.

The profile is referenced in the user data.

Level 1 Level 2 Level 3 JSON Type JSON Object Obligation Ocurrences
(preliminary)

Identifier (unique) object M 1
ID string id M 1
Alias array alias O n

Services object M 1
Name string name M 1
Address string address M 1

API version: 1
Date: 08.09.2012

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 76

5.3. Interface

5.3.1. Internal Implementation

The profile management module has been implemented acc. the design that is described in

section 5.2.

5.3.2. API

The basic functions of the profile management component are described in [D6.1.1, sec.

6.3.5]. The mentioned functions in this deliverable are not elaborated and mapped to the

API.

Note: In case no parameters are added, this shall be indicated by inserting ‘n/a’ (not

applicable) into the table.

Note: Data types for the parameters are stated in section 5.1 covering the data model.

Function (Ref. D6.1.1): Retrieve, add, modify, delete profile in the system

Function: Retrieve profile

Method: GET Resource: /profiles/{profileid}

Parameters:

profile id The id of the profile that shall be retrieved (linked in user struct).

Function (Ref. D6.1.1): Retrieve, add, modify, delete profile in the system

Function: Add profile

Method: POST Resource: /profiles

Parameters:

BODY The body of the message may contain profile parameters acc. [sec.
5.1.1]. These parameters are provisioned to the created user profile.

Function (Ref. D6.1.1): Retrieve, add, modify, delete profile in the system

Function: Modify profile

Method: PUT Resource: /profiles/{profileid}

Parameters:

profileid The id of the profile that shall be modified.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 77

BODY The body of the message shall contain profile parameters acc. [ref.
this doc, sec.]. These parameters are provisioned to the profile that
shall be updated. They will override existing parameters.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 78

Function (Ref. D6.1.1): Retrieve, add, modify, delete profile in the system

Function: Delete profile

Method: DELETE Resource: /profiles/{profileid}

Parameters:

profile The id of the profile that shall be deleted.

The resource that is mentioned in the API description is adhered to the root URL, for

example:

 Root URL: https://pm.example.org/api/v1/

 Full URL for first case: https://pm.example.org/api/v1/profiles/a1b2c3

The response code will provide general information about the success of the request. The

response headers carry information relevant to the request and further requests. The

response bodies of all requests will contain the complete data sets.

Data can be searched using the search string for the value in the form

/profiles/?q=abc12345&key=id.

Unless specified otherwise, the default content is used in the body. The requested resource

might specify the content type in case multiple content types are offered (e.g. /profiles.json

or /profiles.xml).

5.4. Sequence Diagrams

The sequence diagram in section 4.4 contains also a sample flow for the profile

management.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 79

6. Security Manager
This chapter describes high level design for implementation of Security Manager into HBB

Next project. It is designed with following key aspects:

 Provide key&certificate managementrelated functions within HBB-NEXT domain

 Provide privacy and access control fou users

 Be platform independent

 Support open APIs for smooth integration of current or future HBB-NEXT

technology building blocks

 Support any of present and future multimedia HBB-NEXT services

 Reliability, resilience and security

 Cost-effective operation and maintenance

Please note that this document describe design of proposed implementation that is specific

for functional prototype. Any other design specifics that are beyond of the prototype focus

is subject of another document. However specific prototype design described here is fully

align with the general Security Manager design.

6.1. Scope

The Security Manager (SM) component is responsible to:

 manage multi-factor authentication, authorization, and policy enforcement for

different levels of privacy and for profile data access control,

 handle authentication, i.e. it acts as an identity provider towards the STB. The

IdM shall act as back-end for the authorization process,

 manage and verify tokens,

 provide PKI management for HBB Next domain: Certificate Authority (CA) and

Certificate Revocation List (CRL),

 store of security related data (pass phrases, certificates, keys, tokens, …),

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 80

 grant secure access of the HBB Next local services to the external networks,

 update/retrieve certain data in IDM.

Security Manager

Keys&Certificates
Database

Multi-Factor
Authentication

module

Event logging module
(archive)

PKI management

Policy and
Administration

module

Authorization module
(Token manager)

System
Gateway

Terminal
Gateway

Application
Gateway

API module

Figure 12. Internal architecture of the Security Manager

The Security Manager consists of several modules:

Authorization module (Token manager) – will evaluate if the terminal has access to the

HBB network as role-based access controller. This module will either grant or deny access to

the HBB domain.

Multi-Factor Authentication (MFA) module – will be responsible for managing multi-factor

authentication processes, depending on required level of security during User/Group is

accessing the application/s.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 81

MFA will perform a user identification process to create a list of "best matches" and then

perform a series of verification processes to determine a conclusive match. Number of

necessary verification processes depends on the required authentication level for accessing

the service/application/data. HBB-NEXT project supposes to have several required levels of

authentication to verify users before accessing the service with required “level of security”.

(Personal EPG – low level is required; instant messaging – middle level is required, e-

banking – high level is required)

Policy and Administration module – policy enforcer for MFA module and point of security

rules mapping and configuration.

PKI management – will be intended to manage Public Key Infrastructure (PKI) tasks within

HBB-NEXT domain, acting as certificate management system within HBB-NEXT domain.

Event logging module (archive) – is event logger for all activities performed by SM.

Keys&Certificates Database – will hold sensitive cryptographic key information and single

public key certificates.

API module – secure interface for communication among HBB-NEXT entities consisting of

three different sub-modules, the so-called gateways.

 System Gateway – an interface towards HBB-NEXT core modules (Identity

Management, Profile Manager, Trust & Reputation)

 Application Gateway – an interface towards HBB-NEXT application, which will be

used only for communicating with Application Servers and not to applications

hosted on the terminal. Note – necessity of this interface will be a part of further

detailed design analysis within WP3.

 Terminal Gateway – an interface towards Terminal/ End-user device. This

Gateway is needed because of different rules for external devices/terminals

might be used than to all servers within Core and Application layers.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 82

6.1.1. Solution Overview

6.1.1.1. Depended entities

Identity Management (IdM) - This module is responsible for Identity Management role in

HBB Next environment. It stores and manages all user related identity data and provides it

for other entities, excluding security related data (i.e. passphrases, secrets, certificates, keys

…). Security Manager updates respective data in the IDM module to keep it actual.

Multimodal Interface (MM) - This module is responsible for identification and recognition

of subjects that are presented in certain area either by its voice or by its visage.

Additionally, for security purpose, MM module provides to the Security Manager data that

are subject of additional check to confirm (or increase) security level of the user. Security

Manager might enforce various ways how to prove user’s identity, based on the situation or

following action needs.

EPG - This module offer Electronic Program Guide (EPG) for the HBB Next service users.

Based on the metadata and related services, it generate data that are sent to the display

unit. One aspect that influence process of asset generation is the content that actual user is

able to view or follow. Here the Security Manager fulfils the role of supplying engine

providing to EPG Service information whether this user is authenticated enough to be

authorized to view certain content. Authentication level is determined with cooperation of

MM module.

Facebook FrontEnd application (FB FE app) – This module is described for prototype

purpose only. FB FE app represents here general social network service that is used by HBB-

NEXT users. The Security Manager is responsible for the secure access of FB FE app to the

FB app central service, by granting access via distribution of tokens. Security Manager also

provides service whether certain user is obliged to use such service (authenticated enough)

and manage triggering of additional multifactor authentication.

The above mentioned modules are planned to be used for demo purposes, but all other

application modules/entities will depend on Security Module policy enforcement, thus shall

be mentioned here.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 83

6.1.2. Management

The Security Manager might be connected to the management system of respective

provider. This system is beyond of the scope of this design document and is subject of

specific provider related integration. The general requirement is to connect the provider’s

own higher level OSS/BSS via a firewall that also does NAPT.

6.1.3. Hardware architecture

Figure 13. Security Manager - Overview of hardware architecture

Security manager is designed as HW platform independent component that must follow

criteria:

 CPU: 2.2GHz dualCore

 RAM: 2GB

 HDD: 250GB

 Network: 100 Mbps ETH

6.1.4. Authorization model

Authorization is important part of overall security in the HBB Next domain, especially for all

terminals, such us set-top-boxes or mobile HBB next-enabled devices as well as all modules

which requires secure APIs communication.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 84

Authorization module as a part of Security Manager takes the responsibility to grant or deny

access to the HBB next domain for all terminals and together with authentication shall take

the role of Provider for Centric Identity. Provider of Centric Identity is not to be used as

Identity Management for the users of HBB next services, but for the HBB Next terminals and

all modules which are in direct communication with Security Module (through the secured

APIs) or requires secure APIs in between.

Model will be based on the OpenID and OAuth standards together with the Public Key

Infrastructure (PKI) architecture.

Note: Authorization model is part of further design analysis, where all details will be

described.

6.1.5. PKI architecture

This chapter describes the Public Key Infrastructure (PKI) design within the HBB Next

domain. The components of Security Manager module responsible for certificate

generation, revocation, lifecycle and key distribution management are highlighted in Figure

14.

Security Manager

Keys&Certificates
Database

Multi-Factor
Authentication

module

Event logging module
(archive)

PKI management

Policy and
Administration

module

Authorization module
(Token manager)

System
Gateway

Terminal
Gateway

Application
Gateway

API module

Figure 14. Overview of responsible modules

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 85

PKI Management and Keys&Certificates Database plays role of Public Key Infrastructure

internally, for one HBB Next domain. This chapter describes internal structure of those

components as well as the whole enrolment and revocation strategy, including the details

about key distribution within the “home” HBB Next domain. Relations between HBB Next

domains are not part of this chapter and will be analysed separately.

PKI management is a place of certificate authorities – Certificate Authority and Registration

Authority. Optionally, it can host a responder for certificate status, if Certification

Revocation List (CRL) is not used.

Usage of CRL or Online Certificate Status Protocol (OCSP) or combination of themis subject

of further design analysis. This deliverable provides first designs and protocols for the

following components:

6.1.5.1. PKI Management

PKI Management is one of the modules of the Security Manager, used to create, distribute,

store and revoke digital certificates within the HBB Next domain.

PKI Management

Certificate
Authority

(CA)

Registration
Authority

(RA)Fi
re

w
al

l 1

Firewall 2

OCSP
(optional)

Keys&Certificates
database

Policy and
Administation

Module

Figure 15. PKI Management – internal architecture

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 86

Certificate Authority (CA)

CA is a trusted certificate issuer and the top of trusted hierarchy within the HBB Next

domain. CA will be strictly separated and wouldn’t be networked with any other

component, except with the associated RA. Connection will be separated by an internal

firewall, protecting the CA.

Registration Authority (RA)

The RA is used for modest security level, which means that only the RA can forward

certification request to CA within the HBB Next domain. Otherwise, isolated CA approach

would be used (highest security level), and human intervention is needed.

The RA will only communicate with the certificate requester and post a copy of a certificate

to an LDAP directory, located in the Keys&Certificates database.

Online Certificate Status Protocol (OCSP) sever

The OCSP server is used for checking the revocation status of the already issued certificates.

This component does not have to be presented if Certificate Revocation List stored in LDAP

is used. Both methods, OCSP vs CLR, has pros/cons and must be evaluated in further design.

Usage of OCSP is marked as optional for now.

Firewall 1

A logical component which strictly defines Access Control (ACL) rules, protects the CA and

only allows communication between the CA and the associated RA.

Firewall 2

A logical component protects whole PKI Management module used for communication

towards other related components of the SM.

PKI management shall be located on physically separated server.

6.1.5.2. Keys&Certificates Database

Keys&Certificates database represents central storage for keys, certificates and CRLs used

for PKI Management, based on LDAP service.

The component is protected with firewall and shall be connected to PKI module only.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 87

CRLs
Directory

Keys&Certificates Database

LDAP server

Public Keys
Directory

Certificates
Directory

Firewall

Figure 16. Keys&Certificates database

6.1.6. Use case

Below mentioned use case shows role of SM as well as other components within HBB-NEXT

architecture.

6.1.6.1. Preconditions:

 Lisa - owns HBB-NEXT enabled mobile device or tablet,

 Tom - is Lisa's brother. He has different interests than his sister and has no mobile

device,

 They have at home HBB-NEXT enabled device – TV&STB (it may be a single

device). This device is connected to the Internet,

 Lisa’s and Tom’s parents – they are setting rules on TV&STB HBB-NEXT device for

their kids

 All devices are connected to the Internet (for the purposes of this scenario),

 Mia – Lisa’s friend, she is using other HBB-NEXT provider (other HBB-NEXT

domain)

 Profiles of Lisa and Tom will be pre-filled (for demo only). Both are using one

HBB-NEXT provider

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 88

 Lisa is using HBB-NEXT service and her tablet is connected to internet

 Her profile shows that she has brother Tom and also Tom’s photo (demo case –

filled before)

 Lisa will use applications that demonstrates the applicability of multifactor-

authentication, concretely:

• EPG – Lisa’s customized program guide – Level 1 - sufficient identification

is face / voice recognition

• Facebook – Level 2 – say a passphrase or password if nobody else is in the

room (this will be always monitored) OR PIN/Passcode with using of

remote control if someone else is in the room (saying of passphrase will

be disabled)

• Messaging – Level 2 - same conditions as for Facebook app

• Shopping – before payment - say a passphrase or PIN. The system shall

also look for someone else in the room (this could be detected by MM

(multi-modal interface) and IDM service has announced Shopping)

• Shopping- payment phase – Level 3 - Lisa wants to pay selected items in

the shop - SMS confirmation code or pupil recognition is required (it

must be discussed with Gregor)

 same applications will be available through TV&STB

6.1.6.2. Scenario:

1. Lisa is in the living room and has its own programs and videos available through the

VoD and EPG menu and she is chatting with Mia (chat service is triggered via MM

with the profile of Lisa).

2. Tom is coming and is identified by camera on TV&STB. Screen shows – “Tom is

coming” Now, EPG expands by their common preferences (as an example). Running

IM conversation between Lisa and Mia is moved to the background and is now

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 89

available on the Lisa’s tablet only. If Lisa wants to continue with the chatting, she

will be asked to enter a PIN via the remote control.

3. Tom on launching Facebook app on the TV&STB - because Lisa was there before,

the system knows that no notifications are necessary, and so allows him to sign in

(via PIN/passcode) even presence of Lisa.

4. Lisa and Tom are in the living room debate on video that they saw. System offers

them the opportunity to see this video with similar content because it was

discerned from conversation (Given that this option is enabled Tom and Lisa's

profile, and be able to ban permanently)

5. Tom in on the Facebook / (or other app) and wants to buy a tree for his virtual

farm. It is forbidden to him because lack of his age. Purchase can be enabled by

parents only, thus they are receiving alert message (only parents and persons

authorized by them shall be able to allow their children to buy something.

End of demo.

6.1.7. Sequence Diagram

This chapter describes communication of all components involved in the prototype use

case, described in the chapter above. We use sequence diagram as self-explanatory form of

description.

Main simplification used here:

 We suppose that Security Manager is already pre-provisioned with respective

data, i.e. IDs, pass phrase, trust level data, …

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 90

Figure 17. Sequence Diagram

Li
sa

To
m

M
M

N
ot

ifi
c

at
io

n
S

ec

M
ng

Id
M

P
ro

fil
eM

ng
M

ia

C
om

e
to

 ro
om

 a
nd

 tu
rn

-o
n

TV
ge

t:
se

t_
of

_I
D

 o
n

de
vi

ce
 ID

se
nd

: U
pd

at
e:

 ID
, p

ro
ba

bi
lit

y,
 o

th
er

 in
fo

?
C

la
ss

ic
al

 _
ID

+s
et

 o
f v

ec
to

rs

no
tif

y:
 n

ew
 ID

 (n
ot

co

nf
irm

ed
) h

er
e!

S
ec

ur
ity

 c
he

ck
: m

ul
ti-

le
ve

l a
ut

he
nt

tic
at

io
n,

pa

ss
ph

ra
se

 v
ec

to
r

S
ay

 h
el

lo

S
ec

ur
ity

 c
he

ck
: c

on
fir

m
/re

je
ct

no
tif

y:
 u

pd
at

e
ID

(c

on
fir

m
ed

 o
n

L2

tru
st

) h
er

e!

E
P

G

ge
t:

al
lo

w
ed

 a
ut

h
le

ve
l,

us
er

_I
D

, d
ev

ic
e

ID

TV
TV

S
er

vi
ce

2
ra

tin
g

si
m

pl
ifi

ed
si

m
pl

ifi
ed

S
er

vi
ce

3
ch

at

si
m

pl
ifi

ed

as
k:

 c
on

ne
ct

 to
 S

TU
B

A
-C

H
A

T
Li

sa
’s

 e
xt

er
na

l s
er

vi
ce

 w
ith

 p
ro

fil
e

se
nd

: c
on

fir
m

at
io

n
of

 M
ul

tiL
ev

el
 a

ut
h,

 if
 e

xi
st

 s
es

si
on

, .
..

ST
U

B
A

C

H
A

T

as
k:

 A
ut

ho
riz

at
io

n
of

 e
xt

er
na

l d
ev

ic
e,

 Id
, t

im
es

pa
n,

 s
er

vi
ce

Id
se

nd
: t

ok
en

as
k:

 s
er

vi
ce

 fo
r m

ob
ile

 d
ev

ic
e,

 to
ke

n

ch
at

C
om

e
to

ro

om

U
pd

at
e:

 ID
, o

th
er

 in
fo

?

no
tif

y:
 n

ew
 ID

 (n
ot

co

nf
irm

ed
) h

er
e!

no
tif

y:
 n

ew
 ID

, d
ev

ic
e

ID

U
pd

at
e

P
as

sp
hr

as
e

vi
a

P
IN

 a
pp

tri

gg
er

ed
 b

y
lis

a
us

in
g

S
TB

R

em
ot

e
co

nt
ro

lle
r

M
F

au
th

 le
ve

l
up

da
te

d
in

D

B

S
er

vi
ce

4
C

on
te

nt
 o

ffe
r

&
 s

ch
ed

ul
er

si
m

pl
ifi

ed

Ta
b

le
t

in
vi

te
: s

er
vi

ce
, t

ok
en

no
tif

y:
 n

ew
 ID

, d
ev

ic
e

ID

P
ro

vi
si

on
in

g
sy

st
em

P
re

-p
ro

vi
si

on
in

g
of

 c
us

to
m

er
’s

 d
at

a
P

re
-p

ro
vi

si
on

in
g

of
 c

us
to

m
er

’s
 d

at
a

se
nd

: a
llo

w
ed

 a
ut

h
le

ve
l,

us
er

_I
D

, d
ev

ic
e

ID
D

is
pl

ay

E
P

G

ge
t:

al
lo

w
ed

 a
ut

h
le

ve
l,

us
er

_I
D

, d
ev

ic
e

ID
se

nd
: a

llo
w

ed
 a

ut
h

le
ve

l,
us

er
_I

D
, d

ev
ic

e
ID

D
is

pl
ay

E

P
G

no
tif

y:
 T

O
M

 (
no

t c
on

fir
m

ed
)

he
re

!

no
tif

y:
 n

ew
 ID

, d
ev

ic
e

ID

In
te

rr
up

t
ch

at
 o

n
TV

FB
 F

E

ap
p

ge
t:

us
er

_I
D

, d
ev

ic
e

ID
, s

ta
rt

as
k:

 c
on

ne
ct

 to
 F

B
 T

om
’s

 e
xt

er
na

l s
er

vi
ce

 w
ith

 p
ro

fil
e

se
nd

: n
o

co
nf

irm
at

io
n

of
 M

ul
tiL

ev
el

 a
ut

h,
ad

di
tio

na
l a

ut
h

ne
ed

ed

as
k:

 A
ut

ho
riz

at
io

n
of

 e
xt

er
na

l d
ev

ic
e,

 Id
, t

im
es

pa
n,

 s
er

vi
ce

Id
se

nd
: t

ok
en

Fb
 s

es
si

on

FB

as
k:

 P
IN

se
nd

: P
IN

Tr
ig

ge
r v

oi
ce

 p
as

sw
d

ap
p

no
tif

y:
 n

ew
 ID

, d
ev

ic
e

ID

m
es

sa
ge

: W
el

co
m

e
Li

sa
!

1*

1*
: s

up
po

se
d

he
re

 th
at

 a
ll

co
m

po
ne

nt
s

th
at

 re
ci

ev
e

no
tif

ic
at

io
ns

 d
id

 s
ub

sc
rib

e
to

 th
is

 s
er

vi
ce

.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 91

6.1.8. API description

6.1.8.1. Multifactor authentication level of given user

Function: Retrieve multifactor authentication level of given user

Method: GET Resource: users/{userid}

Parameters:

user_ID

[device_ID]

Function: Check multifactor authentication level of given user

Method: GET Resource: /users/{userid}

Parameters:

user_ID

[device_ID]

Function: Update multifactor authentication level of given user

Method: PUT Resource: /users/{userid}

Parameters:

user_ID

[device_ID]

Function: Delete multifactor authentication level of given user

Method: DELETE Resource: /users/{userid}

Parameters:

user_ID

[device_ID]

6.1.8.2. User related security data

Function: Add user related security data

Method: PUT Resource: /users/{userid}

Parameters:

user_ID

[device_ID]

Access_code

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 92

Function: Modify user related security data

Method: PUT Resource: /users/{userid}

Parameters:

user_ID

[device_ID]

Access_code

Function: Delete user related security data

Method: DELETE Resource: /users/{userid}

Parameters:

user_ID

[device_ID]

Access_code

6.1.8.3. Security check

Function: Verify the security check level

Method: GET Resource: /users/{userid}

Parameters:

user_ID

[device_ID]

6.1.8.4. API security management

Function: Add new entity for its registration in SM module

Method: ADD Resource: /users/{userid}

Parameters:

user_ID

[entity_ID]

Function: Modify existing entity in SM module

Method: PUT Resource: /users/{userid}

Parameters:

user_ID

[entity_ID]

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 93

Function: Delete existing entity in SM module

Method: DELETE Resource: /users/{userid}

Parameters:

user_ID

[entity_ID]

Function: Revoke of certificate of existing entity in SM module

Method: PUT Resource: /users/{userid}

Parameters:

user_ID

[entity_ID]

Function: Generate new certificate for existing entity in SM module

Method: GET Resource: /users/{userid}

Parameters:

user_ID

[entity_ID]

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 94

7. Conclusion
In this document the first outputs of WP3 have been described: Applications like voice

identifications, 2D face recognition and Reputation framework have been demonstrated

within first beta versions. Others, like Identity manager, Security Manager and Profile

Manager have been described in details from system and design point of view. In the next

year of project all applications will be enhanced and step by step integrated into one demo

application. Faster classification methods will be implemented and tested so the recognition

process would be able to run for an infinite time interval. New decision taking algorithms

will be suggested to meet multi speaker particularities with a possibility of detecting

unknown speaker (not being recorded in the database) by employing some confidence

criteria or by creating general speaker model. There is an on-going research yielding to

implementation of a gesture recognition system based on a pre-defined database. We plan

to build a more sophisticated system which will recognize not only static gestures but also

dynamic gestures and their combination. The preliminary documentation to the present

applications has been described in this document.

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 95

8. References

[1] D2.2 System-, Service-, and User Requirements”, http://www.hbb-
next.eu/index.php/documents

[2] Oravec Miloš, Mazanec Ján, Pavlovičová Jarmila, Pavel Eiben,FedorLehocki: Face
Recognition in Ideal andNoisyConditionsUsing Support Vector Machines, PCA and LDA,
Face Recognition (Ed. Milos Oravec), ISBN: 978-953-307-060-5, IN-TECH, 2010

[3] X.Tan, S.Chen, Z.-H. Zhou, and F. Zhang, Face Recognition from a Single Image per
Person: A Survey, Pattern Recognition, 39(9), pp.1725-1745. 2006.

[4] Oravec,M., Pavlovičová,J., Mazanec,J., Omelina,Ľ., Féder,M., Ban,J.: Efficiency of
Recognition Methodsfor Single Sample per Person Based Face Recognition, chapter in
monograph Reviews, Refinementsand New Ideas in Face Recognition (Ed. Peter M.
Corcoran), ISBN 978-953-307-368-2, IN-TECH, Croatia, 2011, pp. 181-206

[5] R. Verschae, J. Ruiz-del-Solar, and M. Correa, “Face recognition in
unconstrainedenvironments: a comparativestudy,” in Proceedingsofthe Workshop on
Faces in Real-Life Images: Detection, Alignment, and Recognition (ECCV ’08), pp. 1–12,
Marseille, France, October 2008

[6] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-Learning-Detection,” Pattern Analysis
and Machine Intelligence, 2011.

[7] OASIS Open Reputation Management System (ORMS) Draft Version 0.1,
availableathttp://wiki.oasis-open.org/orms/WorkingDraft

[8] D5.2 DESIGN AND PROTOCOL: Multimodal Interface and Context Aware
Recommendation Engine; http://www.hbb-next.eu/index.php/documents

[9] D3.1 ANALYSIS: State of The Art on Identity, Security and Trust, http://www.hbb-
next.eu/index.php/documents

[10] D6.1.1 Initial Version of the HBB-NEXT System Architecture, http://www.hbb-
next.eu/index.php/documents

[11] D2.1 Usage Scenarios and Use Cases, http://www.hbb-next.eu/index.php/documents

http://wiki.oasis-open.org/orms/WorkingDraft
http://www.hbb-next.eu/index.php/documents
http://www.hbb-next.eu/index.php/documents
http://www.hbb-next.eu/index.php/documents
http://www.hbb-next.eu/index.php/documents
http://www.hbb-next.eu/index.php/documents

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 96

9. Abbreviations
OASIS ORMS OASIS Open Reputation Management Systems

AKA Authentication and Key Agreement

AP Aggregation Proxy

BSS Business Support System

CDR Charging Data Record

CF… Call Forwarding…

CH Communication Hold

CLF Connectivity Session Location Repository Function

CLI Command Line Interface

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

HLD High Level Design

HSS Home Subscriber Server

ILOM Integrated Lights Out Management

LI Lawful Intercept

LLD Low Level Design

QoS Quality of Service

RTP Real-time Transport Protocol

UA User Agent

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 97

10. Annex A
The Annex A contains examples of parametric files mentioned in the section 2.1.3.

An example of config_param.txt:

vzorkovacia_frekvencia 22050 #sampling frequency

dlzka_ramca 20 #frame length

posun_ramca 10 #frame shift

minimalna_frekvencia 250 #min. Frequency

maximalna_frekvencia 8000 #max. frequency

pocet_filtrov 28 #number of filters

dct_min_coef 1 #first DCT coefficient

dct_max_coef 20 #last DCT coefficient

prah_min_energie 0.02 #minimal energy threshold

najmensi_absolutny_vykon 130 #minimal power

preemfaza -0.97 #preemphase

CepstralMeanSubtraction 0 # true or false

AdaptacnyKeficientPriemeruCepstra 0.99863 #adaptation parameter for
mean

zlozka data\ #directory of the data

An example of config_kd_knn.txt:

PocetSusedov 4 #number of neighbours

MaxPocetVektorovNaList 160 #number of vector per leaf

VahovanyKNN 1 #weighted or classical KNN

LokalnaVzdialenost Euclid #local distance type

RozhodnutieVahovane 1 #majority rule or weighted
decision

DlzkaNahravkyTrain 14 #length of training recording

MinDlzkaNahravkyTrain 5 #min. length of training
recording

DlzkaBuffraRozpoznavanie 700 #length of a recording buffer

PocetBuffrovRozpoznavanie 4 #number of buffers

MinPomerReci 0.5 #min. ratio of detected speech

DatovySubor knn_vektory.knn #file name of sample database

HBB-NEXT I D3.2 DESIGN AND PROTOCOL (High Level Architecture):
User ID, Profile, Application Reputation Framework

 HBB-NEXT Consortium 2012 Page 98

SuborDatabazyMien databaza_hovoriacich.txt #file name with speaker
names

	Deliverable 3.2
	2TTable of Contents

